For a full list of Wilhelm Lab publications see Google Scholar


Journal Covers


 

2022

(46) GOLD NANOPARTICLES DISRUPT THE IGFBP2/MTOR/PTEN AXIS TO INHIBIT OVARIAN CANCER GROWTH
M.N. Hossen, L.Wang, S.K.D. Dwivedi, Y. Zhang, G. Rao, C.K. Elechalwar, V. Sheth, A. Dey, S. Asfa, S.K. Gulla, C. Xu, K. Fung, J.D. Robertson, M. Bieniasz, S. Wilhelm, R. Bhattacharya, P. Mukherjee, “Gold nanoparticles disrupt the IGFBP2/mTOR/PTEN axis to inhibit ovarian cancer growth”
Advanced Science, 2022, 9, 31, 2200491.
DOI: 10.1002/advs.202200491  | PDF (11.1 MB)

 

(45) BIOIMAGING WITH UPCONVERSION NANOPARTICLES
E. Mettenbrink, W. Yang, S. Wilhelm, “Bioimaging with upconversion nanoparticles”
Advanced Photonics Research, 2022, published.
DOI: 10.1002/adpr.202200098  | PDF (2.2 MB)

 

(44) CONTROLLING NANOPARTICLE UPTAKE IN INNATE IMMUNE CELLS WITH HEPAROSAN POLYSACCHARIDES
W. Yang, A. N. Frickenstein, A. M. Holden, V. Sheth, E. M. Mettenbrink, L. Wang, A. Woodward, B. Joo, S. Butterfield, N. D. Donahue, D. E. Green, A. Thomas, T. Harcourt, Y. Hamilton, M. Tang, Z. Malik, R. Harrison, P. Mukherjee, P. L. DeAngelis, S. Wilhelm, “Controlling nanoparticle uptake in innate immune cells with heparosan polysaccharides”
Nano Letters, 2022, 22, 17, 7119.
DOI: 10.1021/acs.nanolett.2c02226  | PDF (6.5 MB)

 

(43) ABSOLUTE QUANTIFICATION OF NANOPARTICLE INTERACTIONS WITH INDIVIDUAL HUMAN B CELLS BY SINGLE CELL MASS SPECTROMETRY
N. D. Donahue, V. Sheth, A. N. Frickenstein, A. Holden, S. Kanapilly, S. Chady, S. Wilhelm, “Absolute quantification of nanoparticle interactions with individual human b cells by single cell mass spectrometry”
Nano Letters, 2022, 22, 10, 4192.
DOI: 10.1021/acs.nanolett.2c01037 | PDF (2.5 MB)

 

(42) LABEL-FREE DIFFERENTIATION OF CANCER AND NON-CANCER CELLS BASED ON MACHINE-LEARNING-ALGORITHM-ASSISTED FAST RAMAN IMAGING
Q. He*, W. Yang*, W. Luo, S. Wilhelm, B. Weng, “Label-free differentiation of cancer and non-cancer cells based on machine-learning-algorithm-assisted fast Raman imaging”
Biosensors, 2022, 12, 250.
DOI: 10.3390/bios12040250 | PDF (2.3 MB)

 

(41) PHYSICAL FORCES IN GLIOBLASTOMA MIGRATION: A SYSTEMATIC REVIEW
A. Grossen, K. Smith, N. Coulibaly, B. Arbuckle, A. Evans, S. Wilhelm, K. Jones, I. Dunn, R. Towner, D. Wu, Y.-T. Kim,  J. Battiste, “Physical forces in glioblastoma migration: a systematic review”
International Journal of Molecular Sciences, 2022, 23, 7, 4055.
DOI: 10.3390/ijms23074055 | PDF (1.3 MB)

 

(40) DISABLING PARTNERS IN CRIME: GOLD NANOPARTICLES DISRUPT MULTICELLULAR COMMUNICATIONS WITHIN THE TUMOR MICROENVIRONMENT TO INHIBIT OVARIAN TUMOR AGGRESSIVENESS
Y. Zhang, C.K. Elechalawar, W. Yang, A. Frickenstein, S. Asfa, K.M. Fung, B. N. Murphy, S. K. Dwivedi, G. Rao, A. Dey, S. Wilhelm, R. Bhattacharya, P. Mukherjee, “Disabling partners in crime: Gold nanoparticles disrupt multicellular communications within the tumor microenvironment to inhibit ovarian tumor aggressiveness”
Materials Today, 2022, 56, 79.
DOI: 10.1016/j.mattod.2022.01.025 | PDF (9.9 MB)

 

(39) NANOPARTICLE SURFACE ENGINEERING WITH HEPAROSAN POLYSACCHARIDE REDUCES SERUM PROTEIN ADSORPTION AND ENHANCES CELLULAR UPTAKE
W. Yang, L. Wang, M. Fang, V. Sheth, Y. Zhang, A. M. Holden, N. D. Donahue, D. E. Green, A. N. Frickenstein, E. M. Mettenbrink, T. A. Schwemley, E. R. Francek, M. Haddad, Md N. Hossen, S. Mukherjee, S. Wu, P. L. DeAngelis, S. Wilhelm, “Nanoparticle surface engineering with heparosan polysaccharide reduces serum protein adsorption and enhances cellular uptake”
Nano Letters, 2022, 22, 2, 2103-2111.
DOI: 10.1021/acs.nanolett.2c00349 | PDF (5.6 MB)

 

(38) CONDUCTIVE AND INJECTABLE HYALURONIC ACID/GELATIN/GOLD NANOROD HYDROGELS FOR ENHANCED SURGICAL TRANSLATION AND BIOPRINTING
E.A. Kiyotake, E.E. Thomas, H.B. Homburg, C.K. Milton, A.D. Smitherman, N.D. Donahue, K. Fung, S. Wilhelm, M.D. Martin, M.S. Detamore, “Conductive and injectable hyaluronic acid/gelatin/gold nanorod hydrogels for enhanced surgical translation and bioprinting”
Journal of Biomedical Materials Research Part A, 2022, 110, 2, 365-382.
DOI:10.1002/jbm.a.37294 | PDF (2.8 MB)
Highlighted on journal cover page (Journal of Biomedical Materials Research Part A; Volume: 110; Issue: 2; February 2022)

 

(37) QUANTIFYING CHEMICAL COMPOSITION AND REACTION KINETICS OF INDIVIDUAL COLLOIDALLY DISPERSED NANOPARTICLES
N.D. Donahue, S. Kanapilly, C. Stephan, M. Caleb Marlin, E.R. Francek, M. Haddad, J. Guthridge, S. Wilhelm “Quantifying chemical composition and reaction kinetics of individual colloidally dispersed nanoparticles”
Nano Letters, 2022, 22, 1, 294–301.
DOI: 10.1021/acs.nanolett.1c03752 | PDF (4.2 MB)


 

2021

(36) GOLD NANOPARTICLES INHIBIT ACTIVATION OF CANCER-ASSOCIATED FIBROBLASTS BY DISRUPTING COMMUNICATION FROM TUMOR AND MICROENVIRONMENTAL CELLS
Y. Zhang, C.K. Elechalawar, M.N. Hossen, E.R. Francek, A. Dey, S. Wilhelm, R. Bhattacharya, P. Mukherjee, “Gold nanoparticles inhibit activation of cancer-associated fibroblasts by disrupting communication from tumor and microenvironmental cells
Bioactive Materials, 2021, 6, 326-332.
DOI:10.1016/j.bioactmat.2020.08.009  | PDF (0.6 MB)

 

(35) NANOPARTICLE TOXICOLOGY
W. Yang, L. Wang, E. Mettenbrink, P. L. DeAngelis, S. Wilhelm, “Nanoparticle toxicology“
Annual Review of Pharmacology and Toxicology, 2021, 61, 269-289.
DOI: 10.1146/annurev-pharmtox-032320-110338 | PDF (1.9 MB)

 

(34) STRATEGIES FOR DELIVERING NANOPARTICLES ACROSS TUMOR BLOOD VESSELS
V. Sheth, L. Wang, R. Bhattacharya, P. Mukherjee, S. Wilhelm, “Strategies for delivering nanoparticles across tumor blood vessels”
Advanced Functional Materials, 2021, 31, 8, 2007363.
DOI: 10.1002/adfm.20200736 | PDF (2.7 MB)


 

2020

(33) SWITCHING INTRACELLULAR PATHWAY AND ENHANCING THERAPEUTIC EFFICACY OF SMALL INTERFERING RNA BY AUROLIPOSOME
N. Hossen, L. Wang, H. R. Chinthalapally, J. D. Robertson, K. M. Fung, S. Wilhelm, M. Bieniasz, R. Bhattacharya, P. Mukherjee, “Switching intracellular pathway and enhancing therapeutic efficacy of small interfering RNA by auroliposome”
Science Advances, 2020, 6, 30, eaba5379.
DOI: 10.1126/sciadv.aba5379 | PDF (2.3 MB)

 

(32) ASSESSING NANOPARTICLE COLLOIDAL STABILITY WITH SINGLE-PARTICLE INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (SP-ICP-MS)
N. D. Donahue, E. R. Francek, E. Kiyotake, E. E. Thomas, W. Yang, L. Wang, M. S. Detamore, S. Wilhelm, “Assessing nanoparticle colloidal stability with Single-Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS)”
Analytical and Bioanalytical Chemistry, 2020, 412, 5205-5216.
DOI: 10.1007/s00216-020-02783-6 | PDF (2.1 MB)
Highlighted on journal cover page (Analytical and Bioanalytical Chemistry; Volume: 412; Issue: 22; September 2020)

 

(31) EXPLORING MALEIMIDE-BASED NANOPARTICLE SURFACE ENGINEERING TO CONTROL CELLULAR INTERACTIONS
C. Lee*, N.D. Donahue*, A.S. Mao, A. Karim, M. Komarneni, E.E. Thomas, E.R. Francek, W. Yang, S. Wilhelm, “Exploring maleimide-based nanoparticle surface engineering to control cellular interactions”
ACS Applied Nano Materials, 2020, 3, 3, 2421-2429.
DOI: 10.1021/acsanm.9b02541 | PDF (3.2 MB)

 

(30) THE ENTRY OF NANOPARTICLES INTO SOLID TUMOURS
S. Sindhwani, A.M. Syed, J. Ngai, B.R. Kingston, L. Maiorino, J. Rothschild, P. MacMillan, Y. Zhang, N.U. Rajesh, T. Hoang, J.L.Y. Wu, S. Wilhelm, A. Zilman, S. Gadde, A. Sulaiman, B. Ouyang, Z. Lin, L. Wang, M. Egeblad, W.C.W. Chan, “The entry of nanoparticles into solid tumours”
Nature Materials, 2020, 19, 566-575.
DOI: 10.1038/s41563-019-0566-2 | PDF (7.2 MB)
Highlighted on journal cover page (Nature Materials; Volume: 19; Issue: 5; May 2020)

 

(29) LIPOSOME IMAGING IN OPTICALLY CLEARED TISSUES
A.M. Syed, P. MacMillan, J. Ngai, S. Wilhelm, S. Sindhwani, B.R. Kingston, J.L.Y. Wu, P. Llano-Suárez, Z. . Lin, B. Ouyang, Z. Kahiel, S. Gadde, W.C.W. Chan, “Liposome imaging in optically cleared tissues”
Nano Letters, 2020, 2, 1362-1369
DOI: 10.1021/acs.nanolett.9b04853 | PDF (7.6 MB)

 

(28) PASSIVE TARGETING IN NANOMEDICINE: FUNDAMENTAL CONCEPTS, BODY INTERACTIONS, AND CLINICAL POTENTIAL
S.M. Narum, T. Le, D.P. Le, J.C. Lee, N.D Donahue, W. Yang, S. Wilhelm, “Passive targeting in nanomedicine: fundamental concepts, body interactions, and clinical potential
In Nanoparticles for Biomedical Applications, Elsevier, 2020, 37-53
DOI: 10.1016/B978-0-12-816662-8.00004-7 | PDF (3 MB)


 

2019

(27) NANOPARTICLE INTERACTIONS WITH THE TUMOR MICRO ENVIRONMENT
Y. Huai, M.N. Hossen, S. Wilhelm, B. Bhattacharya, P. Mukherjee, “Nanoparticle interactions with the tumor microenvironment”
Bioconjugate Chemistry, 2019, 30, 9, 2247-2263
DOI: 10.1021/Acs.Bioconjchem.9b00448 | PDF (2.1 MB)

 

(26) ON THE ISSUE OF TRANSPARENCY AND REPRODUCIBILITY IN NANOMEDICINE
H.S. Leong, …, S. Wilhelm, et al., “On the issue of transparency and reproducibility in nanomedicine”
Nature Nanotechnology, 2019, 14, 7, 629
DOI: 10.1038/S41565-019-0496-9 | PDF (3 MB)

 

(25) A GOLD NANOPARTICLE-BASED LAB EXPERIMENT SEQUENCE TO ENHANCE LEARNING IN BIOMEDICAL NANOTECHNOLOGY AT THE UNDERGRADUATE LEVEL
R. Childers, S. Wilhelm, “A gold nanoparticle-based lab experiment sequence to enhance learning in biomedical nanotechnology at the undergraduate level”
American Society for Engineering Education (ASEE) Annual Conference & Exposition, Tampa, Florida, 2019, 1-16
DOI: Https://Peer.Asee.Org/31959 | PDF (2.4 MB)

 

(24) ELIMINATION PATHWAYS OF NANOPARTICLES
W. Poon, Y.N. Zhang, B. Ouyang, B.R. Kingston, J.L.Y. Wu, S. Wilhelm, W.C.W. Chan, “Elimination Pathways of Nanoparticles”
ACS Nano, 2019, 13, 5, 5785-5798
DOI: 10.1021/Acsnano.9b01383 | PDF (2.9 MB)

 

(23) CONCEPTS OF NANOPARTICLE CELLULAR UPTAKE, INTRACELLULAR TRAFFICKING, AND KINETICS IN NANOMEDICINE
N.D. Donahue, H. Acar, S. Wilhelm, “Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine”
Advanced Drug Delivery Reviews, 2019, 143, 68-96
DOI: 10.1016/J.Addr.2019.04.008 | PDF (4.5 MB)

 

(22) SYSTEM AND METHOD FOR QUANTIFYING THE PRESENCE OF CHEMICAL AND/OR PHYSICAL CONDITIONS IN OCULAR TISSUES
M. Pacal, J. M. Sivak, S. Wilhelm, D. Fonn, “System and Method for Quantifying the Presence of Chemical and/or Physical Conditions in Ocular Tissues”
International Application No. CA/2018/051477
WIPO: WO/2019/095080 | PDF (2 MB)

 

(21) SYNTHESIS OF PATIENT-SPECIFIC NANOMATERIALS
J. Lazarovits, Y.Y. Chen, F. Song, W. Ngo, A.J. Tavares, Y.N. Zhang, J. Audet, B. Tang, Q. Lin, M.C. Tleugabulova, S. Wilhelm, J.R. Krieger, T. Mallevaey, W.C.W. Chan, “Synthesis of Patient-Specific Nanomaterials’”
Nano Letters, 2018, 19, 116-123
DOI: 10.1021/Acs.Nanolett.8b03434 | PDF (4.8 MB)


 

2018

(20) QUANTIFICATION OF GOLD NANOPARTICLE UPTAKE INTO CANCER CELLS USING SINGLE CELL ICP-MS
S. Wilhelm, R.C. Bensen, N.R. Kothapalli, A.W.G. Burgett, R. Merrifield, C. Stephan, “Quantification of Gold Nanoparticle Uptake into Cancer Cells using Single Cell ICP-MS”
PerkinElmer Application Note, 2018, 1-4
PDF (1.0 MB)

 

(19) QUANTIFYING THE LIGAND-COATED NANOPARTICLE DELIVERY TO CANCER CELLS IN SOLID TUMORS
Q.Dai, S. Wilhelm, D. Ding, A.M. Syed, S. Sindhwani, Y. Zhang, Y.Y. Chen, P. MacMillan, W.C.W. Chan, “Quantifying the Ligand-Coated Nanoparticle Delivery to Cancer Cells in Solid Tumors”
ACS Nano, 2018, 12, 8423-8435
DOI: 10.1021/Acsnano.8b03900 | PDF (7.2 MB)


 

2017

(18) PERSPECTIVES FOR UPCONVERTING NANOPARTICLES
S. Wilhelm, “Perspectives for upconverting nanoparticles“
ACS Nano, 2017, 11, 10644–10653
DOI: 10.1021/Acsnano.7b07120 | PDF (4.8 MB)

 

(17) THREE-DIMENSIONAL IMAGING OF TRANSPARENT TISSUES VIA METAL NANOPARTICLE LABELING
A.M. Syed*, S. Sindhwani*, S. Wilhelm, B.R. Kingston, D.S.W. Lee, J.L. Gommerman, W.C.W. Chan, “Three-dimensional imaging of transparent tissues via metal nanoparticle labeling”
JACS, 2017, 139, 9961-9971
Highlighted on journal cover page (JACS; Volume: 139; Issue: 29; July 26, 2017)
* authors contributed equally
DOI: 10.1021/Jacs.7b04022 | PDF (2.4 MB)

 

(16) EXCITATION POWER DEPENDENT POPULATION PATHWAYS AND ABSOLUTE QUANTUM YIELDS OF UPCONVERSION NANOPARTICLES IN DIFFERENT SOLVENTS
C. Würth, M. Kaiser, S. Wilhelm, B. Grauel, T. Hirsch. U. Resch-Genger, “Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents”
Nanoscale, 2017, 9, 4283-4294
DOI: 10.1039/C7NR00092H | PDF (1.4 MB)

 

(15) EXPLORING PASSIVE CLEARING FOR 3D OPTICAL IMAGING OF NANOPARTICLES IN INTACT TISSUES
S. Sindhwani*, A.M. Syed*, S. Wilhelm, W.C.W. Chan, “Exploring passive clearing for 3D optical imaging of nanoparticles in intact tissues”
Bioconjugate Chemistry, 2017, 28, 253-259
Highlighted on journal cover page (Bioconjugate Chemistry; Volume: 28; Issue: 1; January 18, 2017)
* authors contributed equally
DOI: 10.1021/Acs.Bioconjchem.6b00500 | PDF (2.4 MB)


 

2016

(14) REPLY TO ‘EVALUATION OF NANOMEDICINES: STICK TO THE BASICS’
S. Wilhelm, A.J. Tavares, W.C.W. Chan, “Reply to ‘Evaluation of nanomedicines: stick to the basics’”
Nature Reviews Materials, 2016, 1, 16074
DOI: 10.1038/Natrevmats.2016.74 | PDF (0.2 MB)

 

(13) A REAGENTLESS ENZYMATIC FLUORESCENT BIOSENSOR FOR GLUCOSE BASED ON UPCONVERTING GLASSES, AS EXCITATION SOURCE, AND CHEMICALLY MODIFIED GLUCOSE OXIDASE
M. Del Barrio, R. Cases, V. Cebolla, T. Hirsch, S. De Marcos, S. Wilhelm, J. Galbán, “A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase”
Talanta, 2016, 160, 586-591
DOI: 10.1016/J.Talanta.2016.07.062 | PDF (1.0 MB)

 

(12) THREE-DIMENSIONAL OPTICAL MAPPING OF NANOPARTICLE DISTRIBUTION IN INTACT TISSUES
S. Sindhwani*, A.M. Syed*, S. Wilhelm, D.R. Glancy, Y.Y. Chen, M. Dobosz, W.C.W. Chan, “Three-dimensional optical mapping of nanoparticle distribution in intact tissues”,
ACS Nano, 2016, 10, 5468-5478
Highlighted on journal cover page (ACS Nano; Volume: 10; Issue: 5; May 24, 2016)
* authors contributed equally
DOI: 10.1021/Acsnano.6b01879 | PDF (9.4 MB)

 

(11) ANALYSIS OF NANOPARTICLE DELIVERY TO TUMOURS
S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan, “Analysis of nanoparticle delivery to tumours”
Nature Reviews Materials, 2016, 1, 16014
Highlighted on journal cover page (Nature Reviews Materials; Volume: 1; Issue: 5; May 5, 2016)
DOI: 10.1038/Natrevmats.2016.14 | PDF (1.0 MB)


 

2015

(10) COMPOSITE PARTICLES WITH MAGNETIC PROPERTIES, NEAR-INFRARED EXCITATION, AND FAR-RED EMISSION FOR LUMINESCENCE-BASED OXYGEN SENSING
E. Scheucher, S. Wilhelm, O.S. Wolfbeis, T. Hirsch, T. Mayr, “Composite particles with magnetic properties, near-infrared excitation, and far-red emission for luminescence-based oxygen sensing”
Microsystems & Nanoengineering, 2015, 1, 15026
DOI: 10.1038/Micronano.2015.26 | PDF (0.4 MB)

 

(9) WATER DISPERSIBLE UPCONVERTING NANOPARTICLES: EFFECTS OF SURFACE MODIFICATION ON THEIR LUMINESCENCE AND COLLOIDAL STABILITY
S. Wilhelm, M. Kaiser, C. Würth, J. Heiland, C. Carrillo-Carrion, V. Muhr, W.J. Parak, O.S. Wolfbeis, U. Resch-Genger, T. Hirsch, “Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability”
Nanoscale, 2015, 7, 1403-1410
DOI: 10.1039/C4NR05954A | PDF (2.5 MB)


 

2014

(8) UPCONVERSION NANOPARTICLES: FROM HYDROPHOBIC TO HYDROPHILIC SURFACES
V. Muhr, S. Wilhelm, T. Hirsch, O.S. Wolfbeis, “Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces”
Accounts of Chemical Research, 2014, 47, 3481-3493
DOI: 10.1021/Ar500253g | PDF (10.1 MB)

 

(7) ENZYME-INDUCED MODULATION OF THE EMISSION OF UPCONVERTING NANOPARTICLES: TOWARDS A NEW SENSING SCHEME FOR GLUCOSE
M. Del Barrio, S. De Marcos, V. Cebolla, J. Heiland, S. Wilhelm, T. Hirsch, J. Galbán, “Enzyme-induced modulation of the emission of upconverting nanoparticles: towards a new sensing scheme for glucose”
Biosensors and Bioelectronics, 2014, 59, 14-20
DOI: 10.1016/J.Bios.2014.02.076 | PDF (1.0 MB)

 

(6) SPECTRALLY MATCHED UPCONVERTING LUMINESCENT NANOPARTICLES FOR MONITORING ENZYMATIC REACTIONS
S. Wilhelm, M. Del Barrio, J. Heiland, S.F. Himmelstoß, J. Galbán, O.S. Wolfbeis, T. Hirsch, “Spectrally matched upconverting luminescent nanoparticles for monitoring enzymatic reactions”
ACS Applied Materials & Interfaces, 2014, 6, 15427-15433
DOI: 10.1021/Am5038643 | PDF (1.9 MB)


 

2013

(5) MULTICOLOR UPCONVERSION NANOPARTICLES FOR PROTEIN CONJUGATION
S. Wilhelm, T. Hirsch, W.M. Patterson, E. Scheucher, T. Mayr, O.S. Wolfbeis, “Multicolor upconversion nanoparticles for protein conjugation”
Theranostics, 2013, 3, 239-248
DOI: 10.7150/Thno.5113 | PDF (2.3 MB)

 

(4) OPTICAL SENSING OF THE IONIC STRENGTH USING PHOTONIC CRYSTALS IN A HYDROGEL MATRIX
C. Fenzl, S. Wilhelm, T. Hirsch, O.S. Wolfbeis, “Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix”
ACS Applied Materials & Interfaces, 2013, 5, 173-178
DOI: 10.1021/Am302355g | PDF (3.3 MB)


 

2011

(3) MAGNETIC NANOSENSOR PARTICLES WITH LUMINESCENCE UPCONVERSION CAPABILITY
S. Wilhelm, T. Hirsch. E. Scheucher, T. Mayr, O.S. Wolfbeis, ”Magnetic nanosensor particles with luminescence upconversion capability“
Angewandte Chemie International Edition, 2011, 50, 37, A59-64
DOI: 10.1002/Anie.201105813 | PDF (0.6 MB)

 

(2) IRREVERSIBLE SENSING OF OXYGEN INGRESS
S. Wilhelm, O.S. Wolfbeis, “Irreversible sensing of oxygen ingress”
Sensors and Actuators B: Chemical, 2011, 153, 199-204
DOI: 10.1016/J.Snb.2010.10.037 | PDF (0.5 MB)


 

2010

(1) OPTO-CHEMICAL MICRO-CAPILLARY CLOCKS
S. Wilhelm, O.S. Wolfbeis, “Opto-chemical micro-capillary clocks”
Microchimica Acta, 2010, 171, 211-216
DOI: 10.1007/S00604-010-0456-4 | PDF (0.2 MB)