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ABSTRACT: The recent success of large language models
(LLMs) in performing natural language processing tasks has
increased interest in applying generative artificial intelligence
(AI) to scientific research. However, a common problem of
LLMs is their tendency to produce inaccurate and sometimes
“hallucinated” outputs. Here, we established a generative AI
tool, NanoSafari, to automatically extract knowledge from the
biomedical nanoscience literature and address scientific queries.
We developed the Grouped Iterative Validation based
Information Extraction (GIVE) method to extract contextual
information on nanoparticle characteristics from >20,000
published articles and established a database that was
incorporated into the generative LLM to provide accurate
nanomaterial design parameters. Blinded evaluation by biomedical nanoscientists showed that NanoSafari outperformed the
baseline model in providing more reliable parameters for nanomaterial design tasks, as further validated by bench
experiments. Together, these findings demonstrate the utility of AI-based methods for automated learning from “real-world”
published work to provide accurate and reliable scientific references for biomaterial and bioengineering applications.
KEYWORDS: artificial intelligence, large language models, nanomedicine, nanoparticle, drug delivery

Nanomaterials provide a powerful and highly versatile platform
for drug delivery.1 Modification of the biological, chemical, and
physical characteristics of nanoparticles changes their inter-
actions with biological systems,2,3 and features such as material,
size, and charge can affect their biodistribution.4,5 Additional
surface modifications, such as PEGylating or targeting
peptides, further improve the targeted delivery of nano-
particles.6 Various drugs and biomolecules can also be loaded
into the nanoparticles. For example, several cancer chemo-
therapy drugs in nanoparticle formulations have been
demonstrated to have superior solubility, pharmacokinetics,
and treatment efficacy.7,8 Gene therapies involving mRNA
delivery by nanoparticles also show great potential in many
applications, with a recent example being the mRNA-based
COVID-19 vaccine, which was delivered with lipid nano-
particles.9 Proper design of nanoparticles to achieve various
goals is the central task of nanomedicine drug delivery.10

Advances in knowledge regarding nanoparticle delivery and
material science as well as the development of more

sophisticated tools can help in designing novel nanomedicine
with improved efficacy and safety.
Among the emerging methods to achieve precise and

efficient nanomedicine design, the integration of artificial
intelligence (AI) is rapidly transforming this landscape. AI and
machine learning (ML) have been among the fastest evolving
technologies during the past few years. AI has led to several
astonishing achievements in biomedical fields, including
protein structure prediction,11 multiomic data analysis,12

image analysis,13 and de novo protein design.14 Many exciting
applications of AI in nanomedicine have been achieved,
including analyses of images of blood vessels and nanoparticles
to characterize nanoparticle delivery.13 AI can also be trained
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Figure 1. A novel application to increase the reliability of LLMs. (A) “Hallucinations” generated by different LLMs, shown as the invalid
reference ratio of answers (n = 30). Error bars are means ± s.e. (B) Overview of NanoSafari, a two-stage system consisting of information
collection and question answering. For information collection, NanoSafari can extract legitimate papers online by using external tools or
accept users’ paper submissions. Once papers are gathered, NanoSafari uses a fine-tuned BioMed RoBERTa model to validate whether the
uploaded paper meets the requirements for the database. Subsequently, predefined attributes would be extracted by using an iterative
validation extraction framework and then written into the database. For question answering, when a user submits a query, NanoSafari
processes it by breaking the query down into subqueries. The system then targets specific attributes that align with the database’s content in
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to generate a model to predict the delivery of nanomedicine to
tumors.15,16 In this context, the rise of AI technologies
provides an exciting opportunity to overcome existing
challenges in nanomedicine design.17 Several platforms based
on deep learning have been developed for nanoparticle
design.18,19 In addition to these exciting AI applications,
another major AI tool, large language models (LLMs), is also
beginning to garner increased interest in biomedical research.
LLMs are AI models that have been trained on massive
amounts of data, enabling them to understand and generate
human-like text. LLMs have raised significant interest and
attention and are extensively used in many fields. LLMs such as
the Generative Pre-trained Transformer (GPT) leverage deep
neural networks, particularly the Transformer architecture,20 to
process and generate text with high contextual understanding.
The interactive features of LLMs allow users to query the AI
and receive output with natural language. LLMs are easier to
use than other AI tools and can provide more timely responses
to queries, such as addressing clinical questions.21,22 However,
the current LLM models have significant drawbacks, including
“hallucinations” where the model generates information not
grounded in factual data, thus posing critical risks that erode
the credibility of research.23,24 Recent efforts to improve the
reliability of LLMs for medical or research use include training
LLMs with large medical and clinical datasets for specialized
applications25 or to fine-tune existing models.26

Currently, LLMs such as ChatGPT hold great potential to
assist nanomedicine design by providing generic suggestions to
assist researchers, such as summarizing general knowledge of a
design feature, or providing suggestions to optimize nano-
particle formulation. Many researchers have started to use
LLMs, in replacement of or in addition to traditional searching
tools like Google or PubMed, to find solutions for their
problems. However, in part due to the inherent limitations of
LLMs, unreliable and fabricated outputs remain prevalent. To
improve the current LLMs and enable them to serve as a
“copilot” in nanomedicine development, we introduce a new
LLM-based nanoparticle design platform, NanoSafari. We
optimized the LLM method to create a pipeline to extract key
information on nanoparticle design from more than 20,000
peer-reviewed articles on nanomedicine drug delivery. The
extracted information formed a database that was used for the
generation of information by LLM models to provide accurate
information. Users can obtain suggestions on nanoparticle
design and answers about nanomedicine drug delivery
questions via NanoSafari. Notably, NanoSafari provides
100% valid and relevant references in line with the outputs
to assist in nanomedicine research.

RESULTS
Fake References Are a Major Problem with LLMs.

With the increasing use of LLMs such as ChatGPT in
biomedical research, we sought to examine the reliability of the
answers generated by various LLMs. We asked some popular
LLMs 30 questions related to nanomedicine and nanoparticle

drug delivery and examined the validity of the references
provided in the answers by manually checking whether the
cited references exist. Consistent with previous reports
regarding ‘hallucinations’ of LLMs,27 we found that approx-
imately 20% of the references generated by GPT-4o-mini were
fabricated, with other models performing even worse (Figure
1a). Based on these findings, we decided to use GPT-4o-mini
for subsequent experiments due to its lower usage cost and
faster response time, offering both temporal and financial
savings while maintaining a comparable architecture to GPT-
4o. To overcome this limitation and make LLMs more helpful
for designing nanomedicine, we sought to improve the validity
of referencing by creating a basis of solid scientific data for the
LLM to cite from by gathering peer-reviewed articles from the
scientific literature and extracting key information from those
articles (Figure 1b). To do so, we searched Clarivate Analytics’
Web of Science platform with keywords (Table S1) for
significant publications in the field over the past decade. We
then selected the top 50% of papers with the highest average
annual citations each year. To minimize the limitations
associated with using average numbers of citations for
evaluating recent work, we selected 2023 publications with
citation counts above the mean of the previous years (Figure
1c). Papers were downloaded in Portable Document Format
(PDF) manually via institutional subscription or directly from
the publisher if the paper was available via open access. Given
the variations in availability of various journal subscriptions, we
finally obtained 20,338 highly cited papers published in 2015−
2023 (Figure 1c).

Extraction of Key Information from Published
Papers. Next, we defined the following parameters as essential
and key information to be extracted: nanoparticle type, target
site, disease, payload, animal model, surface modification,
administration route, particle size, and particle charge, plus
some supporting information (Table S2). To automatically
extract information on nanoparticle design from the papers, we
developed a method called Grouped Iterative Validation based
Information Extraction (GIVE) (Figure 2a). GIVE was
developed in two stages: First, we introduced a grouped
attribute extraction stage, in which related attributes were
categorized into broader groups based on their interdependen-
cies (Table S3). For example, the nanoparticle characteristics,
including type, size, and charge, were extracted in the same
group. The animal information, such as species, age, and sex,
were extracted together in another group. This grouping
strategy enabled the LLM to focus on relevant paragraphs for
each group, leading to more specific and detailed extractions.
When extracting a specific attribute, GIVE first identifies the
paragraphs related to its group and then extracts the attribute
according to the prompt, while filtering out irrelevant
information. The extracted answers were stored for subsequent
verification. Then, we implemented an iterative validation and
extraction process, drawing on the concept of a self-reflective
agent.28 The same attribute is extracted multiple times, and the
verification function checks whether the newly obtained

Figure 1. continued

the query. Using both lexical and semantic retrieval techniques, NanoSafari identifies papers that are most relevant to the query. Finally, an
LLM compiles and summarizes the retrieved information, providing users with concise and relevant answers. (C) Trends in publications on
nanoparticle drug delivery research from 2015 to 2023. The blue line indicates numbers of scholarly articles each year that fall within the top
50% of average annual citations for nanoparticle drug delivery; the orange line depicts the cumulative number of articles collected in our
database; the green line indicates the number of articles from 2023, adjusted according to the selection criteria from previous years.
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Figure 2. Extraction and evaluation of information from publications. (A) Workflow for the extraction pipeline. Attributes are grouped and
then extracted and validated iteratively by comparison with a refined extraction as well as historical extraction. (B−E) Extraction comparison
between the GPT-4o-mini and Grouped Iterative Validation based Information Extraction (GIVE) method. Each method was tested for
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answer is semantically similar to the previous one in the vector
space. If the answers are found to be semantically similar, then
the attribute is considered valid and retained. If not, the
extraction process will be repeated and updated results will be
validated again. However, if no consensus can be reached after
several iterations, the attribute is discarded (Figure S1). This
dual-verification mechanism ensures high accuracy by retaining
only attributes that showed consistency with either refined
answers or historical extractions.
Next, we used two approaches to assess the performance of

the information extraction: an automated lexical evaluation
that relied on exact character matching and a semantic
evaluation that was performed manually. The lexical evaluation
looks for exact matches of words, whereas the semantic
evaluation examines the meaning behind the words. For
example, if the original text in the article uses the term “renal”
and the extraction result was “kidney”, the lexical evaluation
would flag it as incorrect, but sematic evaluation would accept
it as the correct answer. The information extraction accuracy of
the GIVE framework was 80.03% based on lexical assessment
and 90.50% through semantic evaluation. This demonstrates
that the GIVE method, which utilizes GPT-4o-mini as its base
LLM, achieves higher accuracy and more valid extraction of
information across all attributes compared to using GPT-4o-
mini alone (Figures 2b−e and S2−S5).
Analysis of the extracted data and predefined attributes

revealed that the data could be categorized according to the
intrinsic characteristics. The extracted data were classified as
two distinct types: structured and unstructured. Structured
data follow a specific, deterministic format or a finite set of
predefined options, enabling consistent representation and
easier processing. In contrast, unstructured data lack a set
format and can vary widely in structure and presentation. For
example, the term “surface modification” is considered
unstructured data because it includes descriptive words or
phrases describing techniques applied to alter the surface
properties of materials. On the other hand, the term “particle
size” is structured data, as it consists of a single numeric value
representing the nanoparticle’s exact size. Analysis of the
results showed that for unstructured data, semantic evaluation
resulted in higher scores than lexical evaluation, suggesting that
lexical evaluation may fail to accurately match unstructured
attributes with their corresponding answers because of the
undetermined format. Further analysis also supported this
hypothesis: lexical evaluation tended to underperform on
extracted unstructured attributes, such as “surface modifica-
tion” and “Targeted site” (Figure 2f, Table S5). For those
attributes, variations in phrasing of the same answer can lead to
failures in lexical evaluations that rely on exact character
matches. In addition, factors such as abbreviations, chemical
formulas, and other nuances can also affect the lexical
evaluation of unstructured attributes. Since relational databases

use methods similar to lexical match for retrieval and prioritize
returning higher-scoring results, unstructured attributes are
often not effectively retrieved using these methods in such
systems.
On the other hand, the semantic evaluation performance

showed no significant difference between unstructured and
structured attributes (Figure 2g). Given this observation, we
designed a hybrid database by adopting different search
methods for unstructured and structured attributes to
eliminate this bias with regard to searching different types of
attributes. We removed the lexical retrieval for unstructured
attributes to mitigate the ineffectiveness of this method. As a
result, a relational database was established for lexical search�
retrieved structured data, and a vector database was established
for semantic search�retrieved unstructured data. For each
paper, unstructured attributes were concatenated, converted
into embeddings, and stored in the vector database, while
structured attributes were stored separately in the relational
database (Table S6). This storage process enabled the efficient
retrieval of both structured and unstructured attributes.

Characterizing the Extracted Information on Nano-
particles. We next analyzed the information we gathered in
the database to characterize the dataset. Overall, we were able
to extract the essential and critical nanoparticle attributes from
>80% of the total papers (Figure 3a). We further examined and
characterized the data in the database by validating the data
trends with known knowledge. First, we checked the
association of certain characteristics with the nanoparticle
type. As expected, the parameter “lipid cholesterol ratio”
appeared more often for the liposomal type of nanoparticle
than for other types, especially inorganic nanoparticles
(44.79% vs 2.77%, Figure 3b). The parameter “gene length”
was most commonly available for nanoparticles when the
payload type was nucleic acid (Figure 3b). The relationship
between different attributes extracted from each article was
further illustrated by chord graphing (Figure 3c). We further
examined whether these trends reflect the characteristics of
different nanoparticles. Compared with inorganic nano-
particles, liposomal nanoparticles had more available attributes
of “lipid and cholesterol ratio” (Figure 3d). Also, the attribute
“gene length” was often available when the payload was nucleic
acid and was nearly absent when the payload was small
molecule (Figure 3d). The overall frequency of extracted data
for different types of nanoparticles and payloads, and their
chances of coexisting with other parameters, is shown in
Figures S6 and S7. We also examined the association between
the numeric values of nanoparticle parameters and their
characters. The size of nanoparticles showed different
distributions based on the targeted site. For example, kidney-
targeting nanoparticles were smaller than liver-targeting
nanoparticles (Figure S8). The distribution of extracted
attributes is summarized in Figures S9−S11. In sum, the

Figure 2. continued

attribute extraction across 400 iterations. (B) Overall comparison by lexical evaluation. (C) Overall comparison by semantic evaluation.
(D,E) Grouped extraction comparison by lexical evaluation (D) or semantic evaluation (E) between GPT-4o-mini and GIVE by groups. The
seven groups are nanoparticle (NP) characteristics (4 attributes, n = 80), NP surface modification (2 attributes, n = 40), target and purpose
(2 attributes, n = 40), payloads (3 attributes, n = 60), dosage and stability (3 attributes, n = 60), test animals (5 attributes, n = 100), and
storage (1 attributes, n = 20). (F,G) Extraction comparison between structured and unstructured attributes by lexical evaluation (F) or
semantic evaluation (G). Eight attributes (n = 160) were used for unstructured data in each group and twelve attributes (n = 240) for
structured data in each group. Two sample paired t-tests were used in (B−E); Welch t-tests were used in (F,G). All error bars are means ±
s.e.
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Figure 3. Characterization of the nanomedicine database. (A) Overview of the database attributes. (B) Occurrence of lipid cholesterol ratio
by nanoparticle type (n = 4,127) and occurrence of gene length by payloads (n = 1,235). (C) Co-occurrence chord graph of database
attributes. Each arc represents an attribute, with the width of the arc proportional to the frequency with which the attribute appears in the
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information gathered in our nanoparticle characterization
database reflects known “real-world” knowledge. The extracted
data also enabled us to track the publication trends. The
percentage of cancer-related research in the nanomedicine field
remained stable between 2015 and 2020 but decreased since
2021 in parallel with an increase in noncancer research (Figure
3e), probably because of growing interest in vaccines after the
COVID-19 pandemic. The nanoparticle type in the studies
remained stable among the major classifications of inorganic,
liposomal, and polymeric (Figure 3e). For the payloads being
delivered by the nanoparticles, we saw a slight but steady
decline in small molecules and an increase in inorganic and
macromolecules over time (Figure 3e).

Overview of Multiagent Question Answering. Next, to
use the information in our database to achieve better responses
from the LLM, we designed an application, NanoSafari, to
incorporate information from the query. The answering
framework enables users to use natural language inputs and
receive accurate and relevant advice from reliable sources in an
interactive manner. The framework uses the concept of
multiagent system,29 Chain of Thought,30 and least-to-most
prompting,31 which function by deconstructing a complex
question into a sequence of intermediate steps to be resolved
independently by several agents (Figure 4a). First, the parsing
agent validates whether a query is relevant to the field of
nanomedicine; if the agent determines that the query is
irrelevant or unreasonable, it would be rejected by returning a
predefined message to prompt the user to amend the query.
Otherwise, the agent deconstructs the query into fine-grained
subqueries and extracts key information for further processing.
Next, the searching agent retrieves information from both
relational and vector databases by lexical and semantic search
methods. The searching agent incorporates a structured query
language (SQL) generation tool, which is responsible for
generating SQL queries based on the structured output
provided by the parsing agent, thereby enabling the lexical
extraction of data from the relational database. A vector
database search tool is also integrated, allowing the agent to
perform semantic searches and retrieve conceptually similar
data from the vector database. The retrieved data are ranked by
the relevance to the question and citation counts and passed to
the next agent, the summarizing agent, which consolidates all
of the information collected from the databases (i.e., the
output from the search agent) and responds to a user’s query
with a structured and comprehensive answer. In addition to
providing a clear and organized response, the summarizing
agent ensures that the relevant papers and sources are cited
within the text, allowing the user to trace the information back
to the original research.

NanoSafari Provides Better Results than GPT. To test
the performance of NanoSafari, we generated answers to 10
nanoparticle design questions by using NanoSafari or GPT-4o-
mini in parallel (Table S7). The questions were related to a
variety of different nanoparticle types, payloads, and tasks. We

invited postdoctoral fellows in the field of nanomedicine to
blindly evaluate the randomized answers in terms of four
variables: overall helpfulness, depth of knowledge, depth of
details, and faithfulness. The results showed that the users
preferred the answers from NanoSafari significantly more often
than those from GPT-4o-mini (P < 4.5 × 10−6, Figure 4b).
Examination of the reference(s) in the generated answers for
validity revealed that on average, only about 35% of the
references provided by GPT existed, whereas 100% of the
references provided by NanoSafari were real (Figure 4c).
Further manual evaluation confirmed the validity of the
references and high relevance to the query and output. These
results suggest that NanoSafari can generate more helpful and
reliable answers to address the needs of researchers compared
with GPT-4o-mini.

Continuous Self-Evolution of NanoSafari. Considering
that NanoSafari relies on information in the database to
provide relevant and accurate results, we tested if adding new
papers to enrich the database could further improve the
performance of NanoSafari. We designed the experiment by
forcing NanoSafari to refer to a subdatabase with information
extracted from 500 irrelevant papers as the control group and
used another subdatabase consisting of the 500 irrelevant
papers plus 500 relevant papers as the test group (Table S8).
Blinded scoring showed that the addition of relevant papers
significantly improved the quality of generated answers in
terms of overall helpfulness, faithfulness, and richness of details
(Figure 4d). This result suggested that NanoSafari had the
potential for continuous evolution and prompted us to
establish a platform for the research community to feed the
database with the latest information. To do so, we enabled
NanoSafari to allow users to upload copies of research papers
for automated information extraction using GIVE. The whole
extraction process is automated. With this function, members
of the nanomedicine research community can contribute to the
database and improve its abilities (Figure 4e).

NanoSafari Provided Better Nanoparticle Designs
than GPT. Finally, we undertook experiments to validate
whether the results generated by NanoSafari could help with
bench work. We asked NanoSafari and GPT-4o-mini to
provide design suggestions to formulate lipid nanoparticles to
be loaded with green fluorescent protein (GFP) mRNA. Both
outputs suggested using cationic lipids and PEGylation but
showed differences in lipid type and ratios of reagents.
Notably, GPT suggested using 10% DSPE-PEG2000, which
is out of the usual range according to our experience and
published work. GPT also suggested using A18-Iso5p-P18 as
the cationic lipid, for which we could not find ordering
information and used A18-Iso5-2DC18 instead. In contrast,
NanoSafari suggested DLin-MC3-DMA, which was readily
available. NanoSafari further suggested using a 1.5% ratio of
DSPE-PEG2000, which was within a reasonable range and was
consistent with the percentage of PEG in the provided refs 32
and 33. We then formulated the lipid nanoparticles by using

Figure 3. continued

dataset. The chords connecting the arcs signify the co-occurrence of attributes, with the chord width indicating the frequency of their joint
occurrence. n = 20,338 independent papers. (D) Co-occurrence chord graph of database attributes for payloads. Arrows point to the main
differences between graphs. (E) Distribution of key attributes in nanoparticle drug delivery research by year, illustrated for disease type
(cancer, noncancer, or infection); nanoparticle type (inorganic, liposomal, or polymeric); and payload type (inorganic, nucleic acid,
macromolecular, or small molecule). “Unknown” represents the proportion of articles for which the key attributes are not specified or could
not be classified.
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Figure 4. Database support enhances content generation. (A) Workflow for question-answering framework. The framework consists of three
main components: a parsing agent that decomposes queries into fine-grained questions; a searching agent that retrieves relevant information
from databases; and a summarization agent that compiles the retrieved data into a comprehensive answer. (B) Comparison of rater
preferences between GPT and NanoSafari in an A/B Test across 10 questions. Participants (n = 6) evaluated responses on 4 dimensions
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the reagents and ratios provided by NanoSafari and GPT and
loaded them with GFP mRNA. The size distribution of the
nanoparticles generated by the NanoSafari formula was more
homogeneous than the GPT formula (Figure 5a). The
NanoSafari nanoparticles also had better mRNA-loading
efficiency (Figure 5b) and achieved more GFP expression
after a 24 h incubation with mouse embryonic fibroblasts
(MEFs) than did the GPT nanoparticles (Figure 5c). We also
tested those lipid nanoparticles for cancer vaccine applications.
When loaded with OVA mRNA, the lipid nanoparticles made
by the NanoSafari formula resulted in more SIINFEKL peptide
presented by bone-marrow-derived dendritic cells compared
with the GPT counterpart (Figure 5d,e). Next, we asked
NanoSafari and GPT about size selection for polystyrene
nanoparticles intended for lung delivery. NanoSafari suggested
a 10−50 nm size for effective diffusion through the alveolar-
capillary membrane and provided relevant citations discussing
nanoparticle lung delivery.34,35 On the contrary, GPT
suggested using a 100−200 nm size and provided a citation.
Upon examination, GPT hallucinated the title and conclusion
of the cited paper by claiming 100−150 nm is the ideal size for
lung delivery, and even provided a real Digital Object Identifier
(DOI) of a paper studying spintronics spin-based quantum
information processing,36 which was completely irrelevant. To
further test the suggestions, we injected same doses of 25 and
100 nm fluorescent PEGylated polystyrene nanoparticles to
mice via the tail vein. Ex vivo imaging showed that the
NanoSafari-suggested 25 nm nanoparticles had more lung
delivery than the GPT-suggested 100 nm nanoparticle (Figure
5f,g). Together, these results demonstrate the ability of
NanoSafari to provide reliable suggestions for a variety of
different nanoengineering applications.

DISCUSSION
LLMs are emerging platforms to assist in nanoengineering.
Among several recent applications of LLMs introduced in
biomedical research are their use in training models to predict
the transfection efficiency of lipid nanoparticles.37 Another
LLM-based application has been developed to assist with
experimental designs for gene editing.38 To train the AI
models, these studies use relatively “clean” experimental data,
which are uniform and consistent in terms of the format from
experimental results. This approach has the advantage of data
uniformity and consistency but could be limited by the scope
of the original experiments from which the data were
generated. In addition, updates to applications trained by
experimental data rely on the input of new data, which could
be delayed relative to more rapid developments in some
scientific fields. The key innovation of our study is that it relies
on the analysis of the natural language of the published
literature to automatically extract contextual information from

both published research and community-fed new research,
which makes it capable of self-evolving for continuous
enhancement.
Humans have used language as a carrier for experience and

knowledge for thousands of years. In the foreseeable future,
natural language will still be the medium for exchanging
scientific discoveries and ideas. A group of experts in
nanomedicine proposed standards for reporting nanostudies
nearly a decade ago.39 However, variations among journal
formats and preferences of authors still complicate the process
for summarizing large amounts of data in a centralized
database. Our study showcases a feasible approach to garner
vast amounts of data in a research area by using natural
language processing to break down some of the barriers
between human natural language and computational algorisms,
and we demonstrated that this effort could significantly
enhance the capability and reliability of AI to assist scientific
research. While human creativity and rigor will remain the
primary drivers of scientific discovery for the foreseeable
future, empowering AI to efficiently generate reliable insights
from the published literature will undoubtedly accelerate this
process. Considering the large amount of published literature
and new research findings being published each year, our
approach, with increasingly sophisticated abilities, holds great
potential to be applied to broader areas of research. Future
work may include additional information to be extracted from
the literature, such as experimental steps, to further enrich the
nanoparticle database and therefore enhance the capability of
AI to assist in designing experiments. However, the scope and
depth of extracted data rely on the information reported by the
paper. The ongoing efforts to enhance the transparency and
reporting standards of scientific papers can potentiate more
enriched and reliable information extraction from future
publications.

CONCLUSION
Our application provides a novel and robust platform to assist
in designing nanoparticles for biomedical engineering,
especially for the purpose of drug delivery. A key advance of
this application is that it extracts information from published
work to generate a database with accurate and reliable
information as an index to substantially enhance the reliability
of LLMs. The ability of the NanoSafari platform to
continuously improve by integrating new data from publica-
tions also ensures that it can keep pace with the latest
discoveries in the field. These features make NanoSafari a
reliable “copilot”″ to assist with and accelerate research in
biomedical nanoengineering.

Figure 4. continued

(general helpfulness, detail richness, faithfulness, and knowledge breadth) for each question. (C) Comparison of valid reference ratio
between GPT-4o-mini and NanoSafari. n = 10 answers for each group. (D) Comparison of rater preferences between the uncorrelated data-
supporting system and data-supporting system supplemented with highly correlated data in an A/B Test across 6 questions. Participants (n =
8) evaluated responses on 4 dimensions for each question. (E) Workflow for the crowdsourcing pipeline. Users submit either DOI or PDF
inputs, which are validated through DOI checks. PDF inputs are filtered by BioMed RoBERTa, followed by manual validation. Validated
documents undergo feature extraction, and the extracted data are stored in the file storage system. Single sample t tests were used in (B,D).
Heatmaps were used in (B,D) to illustrate the preferences of participants when presented with two answer options. The color intensity of
each cell corresponds to the number of participants who favored the answer associated with that cell. Detailed keys are provided to interpret
the color scale in relation to participant counts.
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METHODS
Human Evaluation of AI Outputs. Human participants

evaluated two AI-generated responses to a single question. The
responses from the different AI sources were randomized and the
participants were unaware of the origin of the answers to ensure
blinded test conditions. All participants held a PhD in biomedical or

biological science or an MD, and all had at least 2 years of research
experience in nanomedicine or drug delivery. The participants were
tasked with judging the superiority of one answer over the other
across four key dimensions: (1) overall helpfulness, (2) breadth of
knowledge, (3) details and depth, and (4) faithfulness (“Faithfulness”
is described in further detail in the paragraph on “Lexical Evaluation

Figure 5. NanoSafari effectively supported bench experiments. (A) Size distribution of LNPs generated using formulations provided by GPT-
4o-mini or NanoSafari. (B) mRNA loading efficiency of two different LNPs. The mass ratio of total lipid components (including cholesterol)
to mRNA was set at either 5:1 or 10:1. n = 5 biological independent replicates. Unpaired two-sided t-test. Error bars are means ± s.d. (C)
Representative cell transfection results using two different LNP formulations. (D) Representative flow cytometry result of BMDC
transfected with OVA mRNA-LNP. (E) Summarized result of OVA peptide presented by BMDC. n = 3. One-way ANOVA with correction
for multiple comparisons. Error bars are means ± s.d. (F) Representative image of organs after 4 h of nanoparticle injection. (G)
Summarized results of nanoparticle biodistribution. n = 4 mice each group. Multiple unpaired t-tests. Error bars are means ± s.d.
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Metrics”). The participants were instructed to choose from one of
three responses for each category: (1) source A > source B, (2) A = B,
or (3) A < B. Correspondingly, the answers would be translated into
numerical values of 1, 0, and −1, respectively, for statistical analysis.

Literature Search. Publications of interest were obtained from
the Web of Science (clarivate.com) by using the following query:
((TS = nanoparticle) OR (TS = nano particle) OR (TS =
nanomaterial) OR (TS = nano material) OR (TS = nanoscale
material) OR (TS = nanocarrier) OR (TS = nano carrier) OR (TS =
nanomedicine) OR (TS = nano medicine)) AND ((TS = drug
delivery) OR (TS = chemotherapy) OR (TS = chemotherapy
delivery) OR (TS = inhibitor delivery) OR (TS = agonist delivery)
OR (TS = gene delivery) OR (TS = peptide delivery) OR (TS =
antibody delivery) OR (TS = mRNA delivery) OR (TS = gene
delivery) OR (TS = siRNA delivery) OR (TS = mRNA therapy) OR
(TS = therapy delivery)) AND PY = 2015−2023. PDFs of the
selected papers were downloaded by the study team from the journal
Web sites, through either institutional subscriptions or open access.
Some papers were not included in the final analysis owing to
subscription limits.

Attributes to Extract and Datatypes. Twenty attributes were
extracted from each nanomedicine paper and ranked as essential,
important, or extensive. Essential attributes were mandatory for
inclusion; important attributes were valuable but not critical; and
extensive attributes were supplementary. Attributes were categorized
according to their datatype, classified as TEXT, FLOAT, ENUM, or
BOOLEAN. Here, TEXT data contain free-form text; FLOAT data
represent numerical data with decimals; ENUM attributes represent a
limited set of predefined data; and BOOLEAN data are True or False
only.

Filtering Papers with the RoBERTa Classifier. To filter out off-
topic papers, we used the Robustly Optimized BERT Pretraining
model (RoBERTa),40 which is based on the architecture of BERT.41

RoBERTa uses an encoder-only structure from the Transformer
model, offering a more “lightweight” alternative to LLMs while
demonstrating strong performance across various natural language
processing tasks. In this case, our focus was on papers that explicitly
discuss the process of nanoparticle drug delivery.
A total of 500 papers were manually annotated as either positive or

negative, with 246 papers validated as positive and the remaining
papers classified as negative. Once the filtering process was complete,
the abstracts of both positive and negative papers were then used as
training data for RoBERTa to perform the classification tasks.

Lexical Evaluation Metrics. The metrics of the lexical evaluation
were considered in two categories: correctness and faithfulness. A
response was deemed correct if it accurately met the user’s
information needs. For instance, for the question what is the animal
species of the experiment, the model must correctly identify mouse as
the species. Although the response may include additional details,
such as the animal’s sex or age, the evaluation focuses solely on the
portion directly relevant to the user’s query. “Correctness” in quality
assurance is assessed by comparing model responses against concise
human-annotated gold standards with recall, which is calculated as the
proportion of tokens in the reference answer that are present in the
model response. The model’s responses often include additional
information beyond the user’s specific request. For example, for the
question what is the animal species of the experiment, the model
might respond with details such as the age�6−11 weeks mouse.
Evaluating this supporting information can be challenging without
human annotation. Consequently, we focused on a more limited
objective: faithfulness. A faithful response should be fully grounded in
the provided knowledge. Faithfulness in quality assurance is assessed
by comparing model responses against relevant knowledge, which is
longer text snippets from the source, with K-precision (knowledge-
precision), calculated as the proportion of tokens in the model
response that appear in the knowledge snippet. We comprehensively
considered the two categories by taking the harmonic mean of both as
the criterion for lexical evaluation, defined by the following formula

H
2

recall Kprecision1 1=
+

Semantic Evaluation Metrics. Semantic performance was
assessed through manual scoring by comparing the extracted
information to human-annotated gold standard answers to validate
consistency. Raters were tasked with determining whether a given
answer was (1) fully correct, (2) partially correct, or (3) incorrect,
assigning scores of 1, 0.5, or 0, respectively.

Embedding Model and Semantic Similarity. “Embeddings”
were generated by using the text-embedding-3-large model from
OpenAI (2024). This embedding model processes text inputs and
maps them into high-dimensional vector spaces, effectively capturing
their semantic meanings. To determine the semantic similarity
between two pieces of text, cosine similarity is computed based on
their corresponding embeddings. Semantic search is conducted by
retrieving the embedding of textual data that exhibit the highest
cosine similarity to the embedding of a given input text.

Text2SQL Module. The Text2SQL agent, which uses GPT-4o’s
capability to achieve function calling, enables the model to
autonomously decide whether to request the database. If the model
determines that the query is seeking information from the database, it
will then formulate the necessary SQL query based on the keywords it
has extracted. After generating the SQL query, the module proceeds
with postprocessing by using regular expression.42

Establishment of the Subdatabase. The user’s query facilitates
a search within the vector database, sorting all articles by their
relevance to the query as indicated by the search results. The control
group subdatabase consists of the 500 least relevant articles, identified
by their lowest ranking in the search order. In contrast, the test group
subdatabase is formed by supplementing the control group with the
500 most relevant articles, which are the highest ranked in the search
results.

Crowdsourcing. The NanoSafari system can be accessed at
https://nanosafari.com/. The platform is open to the public by
adopting a crowdsourcing approach. Users are invited to upload
scholarly literature to our database. The system systematically extracts
pertinent attributes and integrates the paper into the database. This
approach leverages the collective knowledge and expertise of the
community, ensuring that the database remains comprehensive and
up to date. The expert review process guarantees the quality and
relevance of the literature, whereas automated attribute extraction
facilitates efficient organization and retrieval of information. By
involving a diverse range of contributors, the system aims to
democratize access to scientific knowledge and foster collaboration
among researchers. The crowdsourcing model not only enhances the
breadth of the database but also encourages active participation and
engagement from the academic community. As more users contribute
to and review the contributed literature, the system continuously
evolves, adapting to emerging trends and new areas of research. This
dynamic and interactive platform thus serves as a valuable resource for
researchers, providing a rich repository of validated and well-
organized scholarly works.

Preparations of mRNA-LNPs. The LNP formulations in this
study were prepared using two different formulations, referred to as
“GPT-4o-mini” and “NanoSafari”, each employing distinct lipid
compositions. Formulation of LNP followed the suggested formula
by each model. Each model generated outputs to the same prompt 20
times independently, and the results were consistent. For the
NanoSafari, the ionizable lipid DLin-MC3-DMA, helper lipid 1,2-
distearoyl-sn-glycero-3-phosphocholine (1,2-DSPC), cholesterol, and
PEG lipid DMG-PEG2000 were dissolved in ethanol at a molar ratio
of 50:10:38.5:1.5. For GPT-4o-mini, the ionizable lipids A18-Iso5-
2DC18, 1,2-DSPC, cholesterol, and DMG-PEG2000 were dissolved
in ethanol at a molar ratio of 50:30:10:10. EGFP-mRNA was prepared
in a 25 mM sodium acetate buffer at pH 4.0. Nanoparticles were
formed by rapidly injecting the lipid solution into the mRNA-
containing aqueous phase while continuously stirring. The mass ratio
of total lipid components (including cholesterol) to mRNA was set at
either 5:1 or 10:1. The resulting LNP suspension was dialyzed against
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a 100-fold volume of 25 mM sodium acetate buffer (pH 4.0) to
eliminate residual ethanol.

Characterization of mRNA-LNP Formulations. Following
dialysis, the size of the LNP formulations was measured using
dynamic light scattering (DLS) with a Malvern Zetasizer ZS90. The
encapsulation efficiency of the LNPs was assessed using the Quant-iT
RiboGreen Assay (Thermo Fisher Scientific, Cat# R11490). Briefly,
LNPs were treated with 0.5% (w/v) Triton X-100 to disrupt the LNP
structure and release encapsulated mRNA. Both treated and untreated
LNPs were diluted to a concentration below 1 μg of mRNA mL−1 and
incubated with an equal volume of RiboGreen assay solution (200-
fold dilution). Standard curves were generated using free mRNA
solutions with or without 0.5% (w/v) Triton X-100, spanning a
concentration range of 0.1 to 1.0 μg of mRNA mL−1. The
concentrations of free and total mRNA in the formulations were
quantified by measuring fluorescence (excitation: 480 nm; emission:
520 nm) and comparing the values to the corresponding standard
curves. To test the transfection efficiency, the mRNA-LNP was
incubated with MEF cells or bone-marrow-derived dendritic cells.
Fluorescence imaging or flow cytometry was used to test protein
expression after 24 h.

Animal Experiments. Wild-type C57BL6 mice were purchased
from Jackson Laboratory. Male mice 8−12 weeks old were used. The
mice were housed in a specific-pathogen-free environment in a 12 h
light/12 h dark cycle with 50% humidity and 22 °C temperature.
Fluorescent PEGylated polystyrene nanoparticles were prepared as
previously described43 and were injected into mice via the tail vein
with a dose of 1012 particles/mouse. After 4 h of injection, the mice
were euthanized, and the organs were imaged to quantify fluorescence
intensity by the IVIS imaging system.

Data Analysis. Two-sided paired t-tests were used to compare
differences between two matchable groups, and Welch t-tests were
used to compare differences between two mismatched data groups.
The statistical methods, meaning of error bars, and numbers of
independent replicates of each figure are all given in the
corresponding figure legends. Significance levels are labeled with
asterisks: *P < 0.05, **P < 0.01, ***P < 0.001. Statistical analyses
were done with IBM SPSS Statistics 25.0, Python 3.9, or R 4.2.3
software.
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