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Abstract

Understanding how engineered nanoparticles interact with biological 
systems is crucial for the development and implementation of 
nanoparticles in clinical settings. However, investigating the complexity 
of these interactions at the nano–bio interface requires technologies 
that can accurately gather biological information at the organ, tissue, 
cellular and subcellular levels in a high-throughput manner. In particular, 
imaging and multi-omics approaches provide powerful tools to study 
nano–bio interactions. In this Perspective, we discuss the application of 
transcriptomics, epigenomics, proteomics and metabolomics technologies 
for the investigation of nano–bio interactions, for example, to assess the 
biodistribution of nanoparticles in vivo, to analyse their interactions with 
specific cell types, and to study cellular responses to nanoparticle uptake at 
subcellular levels. We also examine bioinformatics and machine learning and 
artificial intelligence tools to assess big multi-omics data, suggesting how 
these might be applied to develop and optimize nanoparticles for specific 
applications. Finally, we highlight how multi-omics pipelines might be 
incorporated in the design of new nanoparticle-based treatment strategies.
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proteomics, metabolomics and spatial genomics have enabled a deeper 
under standing of gene regulation and cellular heterogeneity.

Imaging
Imaging techniques can be applied to visualize the formation and 
organization of cells within tissue. For example, microscopy enables 
the imaging of tissue slides, revealing detailed information of cell 
types and physiological features; however, tissue slide imaging can-
not provide an overall picture of the whole body. By contrast, CT 
and MRI allow imaging of the whole body but cannot assess cellular 
information. Imaging approaches that allow visualization of whole 
transparent mouse bodies, while providing cell-specific information, 
have been developed15. Nanobody-based whole-body immunolabel-
ling approaches can penetrate deep into tissue to image intact, whole 
transparent mice with subcellular details. For example, nanoparticles 
that carry fluorescent dyes in the far-red spectrum can be delivered 
into transgenic reporter mice by high-pressure cardiac perfusion15. 
Specific cells or tissues can then be identified by fluorescence imaging 
in the context of the whole body, for example, to visualize all neurons in 
an intact mouse15. This technology provides a non-biased overview of 
the landscape of tissues and cells in the body, and it may be applied 
to study cellular changes in disease states, such as the dynamics of 
immune cells after stroke15.  Furthermore, agents for enhanced choles-
terol extraction and membrane permeabilization have been developed 
to allow homogeneous deep penetration of standard antibodies. This 
method enables whole-body multiplex imaging to assess several cell 
types simultaneously without requiring transgenic reporter mice. This 
immunolabelling platform achieves whole-body visualization of the 
mouse immune system and lymphatic vessels at cellular resolution16.

Imaging mass cytometry enables 3D multiplex imaging of more 
than 40 antibody-stained protein targets at single-cell resolution17. 
Correlative super-resolution microscopy integrates two or more dif-
ferent microscopy images of the same sample18, and super-resolution 
microscopy can achieve an imaging resolution of ~10 nm, thereby 
assessing subcellular structures and single-molecule-level reactions. 
Similarly, the combination of fluorescent microscopy and electron 
microscopy can reveal information at multiple scales or dimensions18. 
In addition, scanning ion-conductance microscopy can be comple-
mented with super-resolution optical fluctuation imaging to achieve 
subdiffraction-resolution visualization of cytoskeleton dynamics in 
live cells19.

Genetics and epigenetics
Single-cell sequencing (scRNA-seq) technologies exploit distinct bar-
codes to track complementary DNA (cDNA) isolated from single cells. 
Sequencing libraries are then built using these barcode-tagged cDNAs, 
which are sequenced by next-generation sequencing technologies. 
Thereby, hundreds of thousands of cells can be simultaneously 
sequenced to analyse their transcriptomes and identify cell clusters 
based on gene expression patterns. Compared with bulk RNA sequenc-
ing, scRNA-seq can reveal heterogeneity among cells. However, 
scRNA-seq cannot provide precise resolution of how transcription 
factors regulate genes. This can be achieved by combining scRNA-seq 
with single-nucleus assay for transposase-accessible chromatin with 
sequencing (snATAC-seq) technology.

In snATAC-seq, the Tn5 transposase carries barcodes that are 
inserted into open chromatin fragments to obtain sequencing results 
from these regions, which are typically key regulatory areas occupied by 
transcription factors20. Moreover, scRNA and snATAC can be combined 

Key points

 • Nanoparticles interact with biomolecules, cells, tissues and organs 
in the body at various levels.

 • Imaging, genetics, epigenetics and proteomics technologies 
allow the precise interrogation of cellular functions and cell–cell 
communication and might, thus, aid in the study of nano–bio 
interactions.

 • Biological variables, such as age and sex, impact interactions with 
nanoparticles and should, thus, be considered in studies investigating 
nano–bio interactions.

 • Omics modalities might be combined to examine biological 
information at different levels to aid in the design of personalized 
nanoparticle-based therapeutic strategies.

Introduction
Nanoparticles can be designed for various clinical applications 
and have been particularly explored for the delivery of drugs and 
vaccines1; for example, anticancer drugs can be formulated as 
liposomal or albumin-bound nanoparticles, outperforming some 
solvent-based agents in terms of safety and efficacy2, and nucleic 
acids, such as mRNA, can be delivered by lipid nanoparticles for vac-
cination. However, the clinical translation of nanoparticle-based 
therapeutics is often hindered by their rapid uptake and clearance 
by the liver and other phagocytic organs, leaving only a fraction of 
nanoparticles reaching the target site3,4. In addition, nanoparticles 
and their payloads can trigger responses in the recipient cells and 
induce variable biological effects. Although nanoparticle delivery3–8 
and cellular responses9–11 have been investigated in different model 
systems, the precise mechanisms of how specific nanoparticles inter-
act with the body (nano–bio interactions) are not yet fully under-
stood. In addition, the interactions of nanoparticles with specific  
cells and biomolecules might be affected by biological factors, such 
as ageing12.

Imaging and high-throughput sequencing can be applied to inves-
tigate material–biological interactions at the nanoscale. Simultaneous 
profiling of the transcriptome, translatome, genome, epigenome, pro-
teome, metabolome and others, referred to as ‘multi-omics’, enables 
the characterization of different levels of information in the same cell 
at high resolution13. In addition, each of these modalities can be used 
separately on different tissues or cells, referred to as ‘multi-modal’. 
Such multi-omics and multi-modal approaches might provide powerful 
tools to study nano–bio interactions.

In this Perspective, we provide an overview of multi-omics and 
multi-modal methods that can be applied to investigate nano–bio inter-
actions, including for the visualization of nanoparticles, to study the 
genetic regulation of their interactions and to identify spatial nano–bio 
interaction mechanisms, also examining strategies for analysing such 
multi-omics and multi-modal data (Fig. 1).

Multi-omics technologies
Multi-omics studies allow the characterization of subtle hetero-
geneities between cells14 and of the interactions between cells 
and nanoparticles. Imaging, genetics, epigenetics, translatomics, 
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to assess the same sample21, sharing a set of barcodes and enabling data 
integration and annotation through bioinformatics, thus improving the 
accuracy of identifying regulatory regions and transcription factors.

Epigenetic information can be obtained through DNA methylation 
profiling, relying on either 5-methylcytosine (5mC) or N6-methylad-
enine (6mA). In addition, transcriptome profiles can be generated 
 alongside targeted DNA methylome profiles, for example, using 
single-cell methylome and transcriptome sequencing (scMT-seq) 
and single-cell triple-omics sequencing (scTrio-seq)22,23.

Spatial transcriptomics
Spatial relationships between cells are crucial for regulating their func-
tions; in particular, the cellular neighbourhood (environ) is essential for 
the formation of functional zones within tissues and the coordination of 
interactions among different cell types24. Such single-cell spatial relation-
ships can be analysed in tissues using co-detection by indexing (CODEX) 
approaches, which rely on DNA-conjugated antibodies and the cyclic 
addition and removal of complementary fluorescently labelled DNA 
probes24,25. In addition, spatial transcriptomics technologies allow the 
quantification and localization of mRNA transcripts, while preserving 
their spatial context, by integrating transcriptomic information with 
spatial positioning26. However, compared to single-cell transcriptomics, 
spatial transcriptomics techniques have only limited depth of sequencing 

and, thus, might not identify transcripts expressed at low levels or fail to 
achieve single-cell resolution. To address this shortcoming, spatial tran-
scriptomics can be combined with scRNA-seq27; here, the spatial infor-
mation can be used to classify cell types and map annotations onto the 
transcriptome, thereby benefitting from the deeper sequencing depth 
of the transcriptome for downstream analysis. Alternatively, cell types of 
interest can be defined based on markers on the transcriptome, and anno-
tations can be mapped onto spatial transcriptomics to assess their spatial 
distribution27. In addition, scRNA-seq data can be directly integrated into 
spatial transcriptomics data, benefitting from the advantages of both 
data types28. Moreover, spatial enhanced resolution omics-sequencing 
(stereo-seq) can reach subcellular resolution for subcellular spatial 
visualization29. Stereo-seq exploits DNA nanoball-patterned arrays to 
provide high-resolution spatial transcriptomic analysis, by combining 
the large field of view and cellular resolution of DNA nanoball arrays with 
in situ RNA capture capabilities, making it highly sensitive and enabling 
the dissection of spatial cell type heterogeneity in complex tissues29,30. 
Combined with the algorithm probabilistic alignment of spatial tran-
scriptomics experiments (PASTE), a method to align and integrate spatial 
transcriptomics data from multiple adjacent tissue slices, continuous 
section spatial transcriptomics may further facilitate the 3D reconstruc-
tion of virtual tissues that integrate the tissue histology with molecular 
and genetic information30,31.
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Fig. 1 | Multi-omics tools to investigate nano–bio interactions. Nano–bio 
interactions can be investigated at different levels using multi-omics tools. The 
characterization of the transcriptome, epigenome, proteome, metabolome and 

spatial aspects of cells can reveal factors that regulate nano–bio interactions. 
t-SNE, t-distributed stochastic neighbour embedding.
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Spatial transcriptomics can also be combined with other omics 
modalities to provide synergistic insights into biological processes. 
For example, spatial transcriptomics can be combined with mass spec-
trometry to simultaneously identify distinct zones of gene expression 
and metabolism32, or with epigenomics to identify genetic regulation 
networks in the context of tissue structure33.

Proteomics and metabolomics
Cellular functions are regulated by gene transcription, but the execu-
tors of biological processes are proteins, lipids and metabolites. Impor-
tantly, the transcriptome and the activities of these biomolecules do 
not always correlate. In particular, transcription and protein levels 
might not necessarily correspond, as mRNA quantification is subject to 
instability and transcriptional ‘bursting’34–36, that is, transcription from 
DNA to RNA can occur in ‘bursts’ or ‘pulses’. In addition, the functions 
of proteins and lipids are further controlled by modifications, such as 
glycosylation and phosphorylation, which cannot be revealed by tran-
scriptome analysis. Therefore, the characterization of biomolecules 
by proteomics, lipidomics and metabolomics techniques provides 
valuable additional information on cellular function.

The proteome refers to the collection of total protein in a cell37. Pro-
teomics analysis usually relies on mass spectrometry to detect and iden-
tify proteins extracted from cells or tissues. However, in proteomics 
analysis, proteins cannot be amplified as in mRNA or DNA sequencing, 
making single-cell proteomics challenging owing to the small amounts 
of protein present in a single cell. Therefore, only abundant ‘housekeep-
ing’ proteins can typically be identified in single-cell proteomics38. To 
address this limitation, high-throughput and high-efficiency sample 
preparation approaches, for example, using a nanowell chip39, and 
detection instruments with high sensitivity can be applied38,40. Moreo-
ver, proteomics at the tissue or organ level can include spatial context 
provided by mass spectrometry imaging41; here, pulsed lasers generate 
ionic species from the samples to obtain mass-to-charge information 
for peptide identification. The location of the laser pulse is known, and 
thus, the resulting mass spectrometry data can be associated with the 
tissue location on the slides. Such techniques have been used to create 
a map of melanoma tissue features by proteomics42, albeit with limited 
resolution owing to the small amounts of protein in the samples.

Alternatively, proteomics technologies not based on mass spec-
trometry can be applied to characterize protein patterns in cells or 
tissues. For example, cellular indexing of transcriptomes and epitopes 
by sequencing (CITE-seq) uses DNA-barcoded antibodies that bind 
to specific proteins, thereby integrating protein and transcriptome 
measurements into a single-cell readout43 while providing spatial 
contexts44. Similarly, CODEX can visualize protein expression in 
tissues25. These targeted proteomics methods complement mass 
spectrometry-based approaches to characterize specific proteins, 
especially those expressed at levels below the mass spectrometry 
detection threshold.

Mass spectrometry-based platforms can also be applied to assess 
metabolites. The comprehensive analysis of metabolites is defined 
as metabolomics45, and the analysis of lipids and lipid metabolism 
is referred to as lipidomics46. Here, the specific metabolites, such 
as lipids, fatty acids or sugar, are isolated from the cell or tissue and 
identified in a mass spectrometer. Metabolomics is particularly prom-
ising for biomarker discovery to characterize and predict disease 
progression47–49. Moreover, fuelled by instrument and bioinformatics 
advances, metabolomics may provide insights into the mechanisms 
of metabolic regulation50.

Translatomics
Translatomics, for example, by ribosomal profiling51 or full-length 
translating mRNA sequencing52, bridges the gap between transcription 
and protein expression. Here, the translation of mRNA into proteins 
is analysed by isolating ribosome-bound mRNA from the total mRNA 
of a cell53. Translatomics can be performed at single-cell resolution54 
and with spatial information55, and it has been explored for the analysis 
of the translation dynamics of tumour-infiltrated immunocytes56 and 
embryonic development54.

Omics technologies to study nano–bio interactions
Multi-omics technologies provide opportunities to study the 
interactions between cells and nanoparticles and shed light on nano-
particle uptake mechanisms, fate and spatial distribution. In addi-
tion, cellular responses to nanoparticles might be investigated at the 
single-cell level.

Visualizing nanoparticles
Nanoparticles have distinct patterns of biodistribution, depending 
on their type57. Following intravenous administration, nanoparticles 
travel through blood vessels and interact with various organs and cells. 
The distribution of nanoparticles in the body can be affected by their 
physicochemical characteristics, including their size, shape and surface 
chemistry58. Therefore, understanding the systemic distribution of 
nanoparticles is crucial to the design of nanomedicines and to maximize 
delivery efficiency. To assess nanoparticle distribution, nanoparticles 
must be visualized and quantified in tissues. Electron microscopy4,8 
or fluorescence imaging3,59 are typically used to visualize and track 
nanoparticles in vivo. However, electron microscopy can quantify only 
small numbers of cells, and imaging areas need to be manually chosen. 
Fluorescence imaging can reveal the overall distribution of nanopar-
ticles but cannot provide resolution at the organ region or cell level 
(Fig. 2a). Alternatively, whole-body mouse imaging15,16 can be combined 
with nanoparticle imaging to simultaneously visualize nanoparticles 
tagged with long-wavelength fluorescence labels and various cell types 
in the entire body. Specific tissues and cells can be selectively labelled 
by antibodies for imaging; for example, antibodies against CD11b can 
be used to label macrophages and monocytes, and antibodies against 
CD31 can be applied to label endothelial cells60. Simultaneous imaging 
of such markers and fluorescently tagged nanoparticles might allow the 
visualization of the systemic biodistribution of nanoparticles and inves-
tigation of their interactions with macrophages in different regions of 
the body, in particular, if combined with 3D imaging platforms17,61, for 
example, to compare the uptake of nanoparticles by liver-resident or 
tumour-resident macrophages.

Correlative super-resolution microscopy might be applied to 
visualize nanoparticle distribution at subcellular levels and nanopar-
ticle interactions with receptors at molecular levels. Furthermore, by 
combining multiple imaging modalities of correlative super-resolution 
microscopy, different aspects of the same sample can be visualized at 
the nanoscale; for example, fluorescence and electron microscopy 
could be applied to visualize specific receptors and organelles, such 
as phagolysosomes62, respectively, to identify interactions of nano-
particles and their uptake in different cell types, such as tumour cells, 
tumour-associated macrophages and liver macrophages.

Imaging benefits from non-invasiveness and could further be 
combined with other multi-omics modalities, such as sequencing 
data, to predict nanoparticle delivery and clinical efficacy. For exam-
ple, histological images of a tumour might be combined with genetic 
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information to assess nanomedicine efficacy. Similarly, MRI or CT data 
may be integrated with spatial transcriptomics to identify imaging 
markers that correlate with genetic or functional data to predict the 
response of an individual to a specific nanoparticle (Fig. 2b).

However, some nanoparticles, such as superparamagnetic iron 
oxide nanoparticles used in MRI, remain stable and can, thus, persist in 
tissue and be detected after labelled cells have died63. Moreover, the sig-
nal strength of nanoparticles in a cell is diluted if cells proliferate. When 
using fluorescent or protein labels, their stability needs to be considered 
to avoid missing signals from nanoparticles for which labels had been 
degraded64,65. Such limitations might complicate the  interpretation of 
nanoparticle imaging results in longitudinal studies.

Genetic regulation of nano–bio interactions
The investigation of transcriptional responses to nanoparticle uptake 
has typically relied on bulk RNA sequencing, which calculates the aver-
age amount of gene transcription per cell and is, thus, not suitable 
for heterogeneous cell populations, such as macrophages66, which 

take up various amounts of nanoparticles. In addition, the amount of 
nanoparticles is averaged in bulk RNA sequencing, making the iden-
tification of specific cell populations with different uptake capaci-
ties impossible. Alternatively, single-cell transcription analysis can 
be applied to quantify the uptake of nanoparticles in individual cells 
by quantifying RNA or DNA barcodes on the nanoparticles67. This data 
can further be correlated with gene expression patterns to identify cell 
populations with high versus low nanoparticle uptake and signalling 
pathways related to uptake mechanisms67,68. For example, single-cell 
transcription analysis has shown that the capacity of the murine liver to 
take up nanoparticles, such as liposomal and polystyrene nanoparticles, 
varies with age owing to differences in macrophage composition and 
gene expression profiles68. Livers from older mice have less abundant 
tissue-resident macrophages and reduced expression of macrophage 
receptor with collagenous structure (MARCO), a scavenger receptor 
associated with nanoparticle uptake, corresponding to less clearance 
of nanoparticles, compared to livers from younger mice. Moreover, 
blocking of MARCO decreases the uptake of nanoparticles in the liver of 
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younger animals, but not in that of older animals, highlighting the need 
to design and apply age-appropriate nanoparticle delivery strategies68.

Sequencing techniques can also be applied to directly quantify 
nanoparticle uptake. For example, nanoparticles can be labelled with 
nucleic acids, such as RNA or DNA, to facilitate their detection in sin-
gle cells by sequencing. The ‘read numbers’ of the specific RNA or DNA 
sequence then indicate the number of nanoparticles in a single cell. 
These data can also be correlated with gene expression patterns to 
assess cell populations with high and low nanoparticle uptake and 
identify pathways related to differences in uptake. For example, cellular 
heterogeneity with regard to lipid nanoparticle delivery to the liver 
in mice67 has been studied by labelling lipid nanoparticles that carry 
mRNA encoding a glycosylphosphatidylinositol-anchored camelid 
single-variable domain on a heavy-chain antibody (aVHH) with DNA 
barcodes to identify recipient cell populations with variable target 
gene transcription and protein production at single-cell resolution. 
The gene expression profiles in each cell cluster are first analysed 
in cells without aVHH expression to assess background genes unre-
lated to lipid nanoparticle delivery. After subtracting the background 
genes, further analysis of gene expression profiles in cells with aVHH 
expression illustrates subtle heterogeneities in endothelial cells and 
Kupffer cell populations with differences in lipid nanoparticle uptake67. 
In addition, lipid nanoparticles show varying delivery efficiency into 
different cell types, depending on their formulation. The protein levels 
of aVHH can be further analysed through reading the DNA barcodes 
linked to anti-aVHH antibodies. The comparison of relative aVHH 
protein levels to lipid nanoparticle levels shows that lipid nanoparti-
cle formulations may affect mRNA expression efficiency in the cell67. 
Furthermore, translatomics analysis could be applied to interrogate 
the factors that influence protein translation.

Different types of nanoparticles, including liposomes, 
polylactide-co-glycolide and polystyrene nanoparticles, have been 
tested with hundreds of DNA-barcoded cell lines to identify factors 
involved in nanoparticle uptake69. Interestingly, both the core mate-
rials and surface modifications of nanoparticles can influence their 
uptake by cells. Importantly, gene expression analysis allowed the 
identification of solute carrier family 46 member 3 (SLC46A3) as a 
predictive marker for lipid-based nanoparticle uptake69. Although such 
screening approaches may enable the identification of regulators of 
nanoparticle uptake, empty barcoded nanoparticles have mainly been 
tested thus far. However, drugs loaded within nanoparticles, including 
toxic chemotherapy agents, might also impact nano–bio interactions 
and nanoparticle uptake. In addition, proteins expressed following 
mRNA delivery may influence the expression of other proteins or alter 
the cellular response to subsequently delivered nanoparticles. There-
fore, FDA-approved nanomedicines, such as liposomal doxorubicin or 
nanoparticle albumin-bound paclitaxel, should be barcoded to study 
factors associated with intra-organ distribution and cellular uptake.

Moreover, the genetic mechanisms and biological variations that 
regulate nanoparticle uptake should be explored. Several biologi-
cal and physiological factors, including age68,70 and sex70–72, impact 
nano–bio interactions in vivo, contributing to disparities in nano-
medicine efficacy12,73 and underscoring the need to account for these 
factors to improve the efficiency of nanoparticle delivery68,72. However, 
such personalized nanomedicine design would require a more com-
prehensive understanding of the regulatory mechanisms that drive 
such differences. Gene expression is regulated by numerous factors, 
including variant splicing of post-transcription mRNAs74 and epigenetic 
modifications of DNA and chromatin, that influence the accessibility of 

gene promoters to transcriptional factors75. In particular, epigenetics 
might be a key regulator of gene expression differences associated 
with sex76,77 and ageing78.

Studies investigating epigenetics in the context of nano–bio inter-
actions have, thus far, mainly focused on how nanomaterials influence 
the epigenetic regulation of cells79,80 and on the use of nanoparticles to 
deliver drugs for epigenetic modulation81. However, how epigenetics 
might regulate nanoparticle clearance and cellular uptake remains 
unknown. Given the role of epigenetic regulation in ageing78, it might 
also affect the ability of cells to interact with nanoparticles. For exam-
ple, the assay for transposase-accessible chromatin with sequencing 
(ATAC-seq) could be applied at the single-cell level and coupled with 
single-cell multi-omics techniques to screen for factors and pathways 
involved in nanoparticle uptake. Epigenomics and transcriptomics 
data could reveal regulation of biological function at different levels 
to identify differences in nanoparticle uptake by different cell types.

However, the analysis and interpretation of single-cell transcrip-
tomics data82 remain challenging owing to noise caused by low sample 
amount, doublets and batch effects, and the presence of transient cell 
states and cell heterogeneity83, in particular, considering the com-
plex cellular responses to nanoparticles. For example, cells might 
induce transcriptive regulation of genes resulting in changes in gene 
expression profiles depending on the level of nanoparticle uptake. 
Therefore, it is difficult to untangle whether gene expression patterns 
cause efficient nanoparticle uptake or whether nanoparticle uptake 
induces these gene expression patterns. Thus, single-cell transcrip-
tomics data should be validated by functional assays using genetic 
knockout, genetic knockdown or antibody blockade.

Spatial context of nano–bio interactions
The spatial relationship between nanoparticles and cells is crucial in 
nanoparticle uptake because the accessibility of cells to nanoparticles 
is defined by their spatial location. Nanoparticles are typically unevenly 
distributed in organs and tumours owing to anatomical features, such 
as the vasculature60, and the access characteristics of different cell 
populations. For example, liver macrophages have direct access to 
nanoparticles in the blood, whereas tumour-associated macrophages 
are separated from nanoparticles by several biological barriers6,84. 
This difference in physical accessibility contributes to differences in 
nanoparticle uptake by macrophages (Fig. 3a). In addition, different 
functional zones within an organ can create diverse nano–bio interac-
tion patterns. For example, liver lobules have periportal, mid-lobular 
and pericentral zones, according to their vicinity to portal vessels and 
central veins (Fig. 3b). Each of these liver zones is characterized by dis-
tinct cell types, metabolic characteristics and drug uptake functions85,86. 
Spatial RNA sequencing can be applied to identify spatially separated, 
distinct subtypes of liver macrophages that might affect the uptake 
and clearance of nanoparticles by the liver87.

Organ and tumour heterogeneity also creates spatially distinct 
zones of cell subtypes. For example, the presence of tumour-associated 
macrophages, which have spatially defined subtypes with distinct roles 
in tumour progression88, in areas with high cell turnover can be associ-
ated with good prognosis, whereas the presence of tumour-associated 
macrophages in necrotic regions predicts poor outcome88. In addi-
tion, tumours have diverse metabolic zones. Hypoxia caused by rapid 
tumour growth and poorly organized blood vessels might promote 
the metabolic programming of cells, which could impact their inter-
actions with nanoparticles. For example, a spatially segregated group 
of hypoxic tumour-associated macrophages has been identified by 
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spatial transcriptomics. These macrophages have the distinct func-
tion of modulating blood vessels in brain tumours89 and are local-
ized around peri-necrotic areas, where they secrete adrenomedullin, 
thereby destabilizing blood vessels. Blockade of adrenomedullin 
decreases the leakiness of blood vessels in these tumour regions, 
thereby increasing the delivery of anti-tumour agents. The presence 
of such spatially defined cell subtypes in tumours may also affect 
the distribution of nanoparticles and their subsequent interactions 

with cells (Fig. 3c). However, how these cells interact with nanoparticles 
remains unknown.

Spatial scRNA-seq can be applied to assess information on the 
location of nanoparticles and cells in conjunction with the single-cell 
transcriptome26. The spatial distribution of nanoparticles can be deter-
mined by imaging their fluorescent labels or by sequencing RNA or DNA 
labels to identify the number of nanoparticles in distinct areas. Informa-
tion on transcription or metabolism, obtained from sequencing, can 
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then be combined with spatial data to investigate the histologic, genetic 
and metabolic differences between these areas (Fig. 3d). For example, 
macrophages with high or low nanoparticle uptake could be compared 
in terms of gene expression profiles and their microenvironment.

Interactions of nanoparticles with proteins
Proteomics can be applied to characterize the protein corona of 
nanoparticles, that is, the biomolecules on nanoparticles adsorbed 
from blood. The protein corona impacts the interactions between 
nanoparticles and cells and can be affected by nanoparticle surface 
modifications90,91. Genomics and proteomics analysis can be combined 
to assess the effects of the protein corona on nanoparticle uptake92. For 
example, by analysing the protein corona using mass spectrometry 
and by screening receptors on cancer cells through genetic knockout 
experiments, serum proteins and cell receptors that might be respon-
sible for nanoparticle uptake in cancer cells could be identified. In 
particular, the interaction between gold apolipoprotein B-100 (ApoB; 
absorbed on gold nanoparticles) and low-density lipoprotein receptors 
on cells might mediate nanoparticle uptake92.

Mass spectrometry can also be used to directly quantify cellular 
uptake of nanoparticles. For example, inductively coupled plasma 
mass spectrometry (ICP-MS) can be applied to detect the uptake of tita-
nium dioxide and silver nanoparticles93. Similarly, the uptake of gold 
nanoparticles by HeLa cells can be quantified by droplet chip ICP-MS94. 
The quantification of nanoparticles by mass spectrometry can also 
achieve single-cell resolution to obtain absolute nanoparticle num-
bers per cell and percentage of cells with nanoparticle uptake, as 
well as to distinguish between internalized versus surface-bound 
nanoparticles95. However, assessing the relationship between 
host cell proteomics and nanoparticle uptake remains challenging, 
in part because of the small amounts of protein present in single cells. 
Technical advances in single-cell proteomics, such as optimized sam-
ple preparation and delivery methods38,96, might overcome protein 
concentration issues, and nanoparticles can further be labelled to 
make them detectable by mass spectrometry to compare the prot-
eomics of cells with high versus low nanoparticle uptake; for example, 
alkanethiol monolayers can be added to gold nanoparticles to serve 
as mass barcodes97.

Table 1 | Bioinformatics tools for multi-omics analysis

Analysis Purpose Tools

Raw data processing Align raw data to reference genome Cellranger, UMI-tools zUMIs, Trim galore, STAR, featureCounts, Trimmomatic, 
RSEM, kallisto

Quality control Remove low-quality cells Seurat, Scanpy

Doublet detection Remove doublets DoubletFinder, scDblFinder, Scrublet, DoubletDetection, DoubletDecon

Data normalization Adjust raw counts in the dataset for variable 
sampling effects by scaling the observable 
variance to a specified range

sctransform, scran deconvolution, CPM, logCPM144, TMM, DESeq145, quantitle, 
Linnorm

Integration of multiple 
samples

Remove batch effect CCA, Rpca, Harmony, MNN, fastMNN, BBKNN, Scanorama, limma, ComBat

Feature selection Exclude uninformative genes that might not 
represent meaningful biological variation 
across samples

scLVM, BASiCS, M3Drop

ScaleData Convert normalized gene expression to 
Z-scores

Seurat, Scanpy

Dimensionality reduction Reduce data complexity and perform 
visualization

PCA, UMAP, t-SNE, scvis

Clustering Identify cellular structure in the dataset SC3, ZIFA, Destiny, SNN-Cliq, RaceID, SCUBA, BackSPIN, PAGODA, CIDR, 
pcaReduce, Seurat, Scanpy, TSCAN

Cell type annotation Assess cellular identity of each cell SingleR, SCSA, CellTypist, Cell-Blast, Tosica, scLearn, scID, scVI, MarkerCount, 
MARS

Differential gene 
expression analysis

Define differently expressed genes Seurat, Scanpy, MAST, edgeR, DEseq2, t-Test, scDE, Pseudobulk

Enrichment analysis Determine enriched pathways in a cell 
type-specific manner

GO, KEGG, GSEA, ssGSEA, GSVA, Reactome

Cell fate analysis Track cell type development Monocle, Slingshot, PAGA, DPT, Cellrank, SLICER, MST, SCUBA, TSCAN, MFA, 
FateID, URD, scvelo

Cell–cell communication 
analysis

Reveal interactions between cell types CellChat, CellPhoneDB, NicheNet, scTensor, CellTalkDB

Spatial transcriptomics 
analysis

Process spatial transcriptome data Seurat, Scanpy, Steropy

Single-nucleus ATAC-seq 
data analysis

Process single-nucleus ATAC-seq data Muon, snapATAC, pyCisTopic, Signac, ArchR

ATAC-seq, transposase-accessible chromatin with sequencing.
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Proteomics might further enable the study of cell responses 
to nanoparticle uptake. For example, proteomics might be applied to 
evaluate the levels of protein expression, following mRNA delivery 
by lipid nanoparticles, and investigate influences on other proteins 
in the cells. In addition, the production of inflammatory proteins 
and cytokines in response to nanoparticles could be assessed by 
proteomics98,99. Proteomics can further be combined with other 
omics data, such as transcriptomics, to assess regulatory networks 
following nanoparticle uptake and effects of post-translational 

modifications, such as phosphorylation, ubiquitination and 
SUMOylation.

However, mass spectrometry-based proteomics analysis can have 
limited reproducibility in certain applications, probably owing to vari-
ations in sample preparation protocols, low stability of serum proteins, 
technical variability between instruments, and the sensitivity of mass 
spectrometers100–102. For example, proteomics analysis of protein 
corona formation on polystyrene nanoparticles has led to different 
outcomes100. Therefore, detailed protocols and parameters of sample 
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preparation and instrument setup should be reported to improve the 
reproducibility of mass spectrometry-based proteomics.

Effects of nanoparticles on the metabolism
Metabolomics analysis can provide useful insights into nano–bio inter-
actions, for example, by evaluating the toxicity of nanoparticles103–105. 
Small-molecule metabolites can be assessed at the single-cell level, 
coupled with genetic and spatial information, to characterize dif-
ferent regions of cellular metabolism32. Such approaches could also 
be applied to explore the relationship between specific metabolism 
zones and nanoparticle uptake, as well as metabolic responses to 
nanoparticles. In addition, lipids are major components of both cell 
membranes and lipid-based nanoparticles, and they can influence 
how nanoparticles interact with other molecules and cells. For exam-
ple, cholesterol affects the composition of the protein corona on 
silica nanoparticles and subsequently influences their uptake and 
inflammatory responses in macrophages both in vitro and in vivo106. 
Therefore, lipidomics analysis would allow the investigation of how 
lipids might influence the pharmacokinetics and biological fate of 
nanoparticles and how lipid nanoparticles may affect lipid metabolism 
networks in cells.

Analysing multi-omics data for 
nano–bio interactions
Complex multi-omics data can be analysed by bioinformatics 
approaches. Various algorithms can be applied to analyse individual 
analytes in single cells107–109 and to integrate measurements across 
multiple modalities14,110,111, each capturing different aspects of cellular 
identity to assess differentiation trajectories, cell–cell interactions, 
and microenvironmental and spatial organization (Table 1). Such algo-
rithms could also be adapted to investigate nano–bio  interactions 
(Fig. 4a).

Differential and enrichment analysis
Differential analysis identifies genes that significantly vary between 
different clusters, and enrichment analysis assesses the functions of 
these genes. The investigation of nano–bio interactions might also 
benefit from differential and enrichment analysis, for example, to com-
pare cells with different nanoparticle uptake abilities within the same 
gene expression profile cluster. For example, differential analysis of 
single-cell RNA sequencing data has been applied to identify differ-
ent subtypes of endothelial cells and their transcription features that 
dictate lipid nanoparticle delivery efficiency in mice67. Furthermore, 
differential analysis following bulk RNA sequencing could reveal dif-
ferent gene expression patterns in cells relating to high versus low 
nanoparticle uptake112. However, such approaches require statistical 
methods to include nanoparticle uptake as a variable in addition to gene 
expression. Differential analysis could also be used to analyse the influ-
ence of nanoparticle size, charge or loaded drug on gene expression9 
by identifying cell clusters and pathways that are affected by nano-
particles. Such data could inform nanoparticle designs that avoid or 
target specific cells to increase delivery efficiency or decrease toxicity.

Cell fate analysis
Cell fate analysis, or pseudotime analysis, can be applied to infer cell 
differentiation sequences by using data at one time point to calculate 
the developmental and differentiation order of cells, that is, the 
temporal aspect of gene expression regulation. Cell fate analysis 
could also shed light on nano–bio interactions, which typically 
involve several sequential signalling cascades1. Instead of capturing 
a few pre-selected time points, cell fate analysis could estimate the 
sequence of activation of different cell pathways following contact 
with nanoparticles. Temporal knowledge of nano–bio interactions 
may help identify therapeutic windows to optimize the timing and 
dosing of nanoparticles.

Box 1 | Experimental design considerations for multi-omics studies of nano–bio 
interactions
 

Nanoparticle injection route
The injection route is an important consideration for nanoparticle 
screening. In vitro injection into cell lines facilitates homogeneous 
incubation. In vivo, direct intra-organ injection (for example, 
intratumoural injection) may cause inhomogeneous distribution 
of nanoparticles. Therefore, intra-organ injection requires prior 
testing by experiments, such as immunofluorescent staining on 
tissue slides, to optimize timing, dosage and injection speed before 
proceeding with spatial sequencing to ensure that the sequenced 
sample is homogeneous and free of bias. Intravenous injection might 
enable targeted delivery to organs but is limited by liver clearance. 
Therefore, pilot experiments should be performed to ensure that 
there is a sufficient number of detectable nanoparticles at the target 
site before sequencing. Regardless of the injection route, spatial 
transcriptome analysis is typically performed in small, manually 
selected areas, in contrast to single-cell sequencing, for which cells 
are typically sorted by flow cytometry. Thus, immunofluorescence 
analysis of selected areas should be performed in addition to 
sequencing to ensure that the area and data are unbiased and 
representative.

Nanoparticle dose and concentration
Low concentrations of nanoparticles might lead to weak signals. 
Conversely, high concentrations of nanoparticles might cause 
tissue and cellular toxicity and signal saturation. For example, the 
dosage threshold to saturate liver uptake of intravenously injected 
polyethylene glycol-conjugated gold nanoparticles is 1 trillion 
nanoparticles in mice155. Doses above this threshold exceed the 
clearance capacity of liver macrophages and, thus, substantially 
increase their tumour delivery efficiency155. Therefore, different 
dosages should be tested to generate a dose–response curve and 
identify the optimal dose for multi-omics assays.

Assay rigour and robustness
Nanoparticles are typically detected through specific labels, which 
must remain functional during organ or cell harvest and throughout 
the sample preparation process. Therefore, at least three different 
sequences of DNA, RNA and peptide barcodes should be used for 
the same nanoparticle. Moreover, the homogeneous distribution of 
barcodes increases confidence in the robustness of the assay.

http://www.nature.com/natrevbioeng


Nature Reviews Bioengineering

Perspective

Cell communication analysis
Analyses of cell–cell communication may enable an understanding 
of how different cell types respond to nanoparticles and how nano-
particles impact their communication. Nanoparticles can travel 
through different cells in tissues and get transported in and out of 
organs4,8,113. Although the interactions between nanoparticles and cells 
have been widely explored114 and strategies have been developed to 
achieve more efficient drug delivery by exploiting nanoparticle–cell 
communication115,116, how different types of cells communicate with 
each other to collaborate on nanoparticle transport has not yet 
been well studied, and how the spatial organization of cells influ-
ences communication and the fate of nanoparticles is not known. 
Bioinformatics-based communication analysis in single-cell sequenc-
ing might help explore such communication. By depicting cell–cell 
communication in the context of nanoparticle interactions and spa-
tial considerations, certain intracellular communication pathways 
could be blocked to modulate nanoparticle delivery or fate. Similarly, 
 nanoparticles could be designed to regulate cell communication.

Artificial intelligence and machine learning
Artificial intelligence (AI) may greatly aid in the analysis of complex and 
big data sets, typical for multi-omics analyses, and may prove especially 
powerful if additional variables, such as nanoparticles, are added to 
the picture. Therefore, AI is being explored for the investigation of 
nano–bio interactions based on various data types.

Computer vision for image analysis
Imaging of nanoparticles in the context of differently labelled cells 
generates complex data sets that might involve not only nanoparticles 
and cells but also other elements, such as blood vessels and macro-
phages, making manual quantification difficult and time consuming 
and data interpretation challenging. AI can be trained to process and 
recognize imaging information, transform it into data points, and use 
algorithms to calculate underlying patterns. For example, computer 

vision, that is, machine learning combined with image segmentation 
techniques to allow the interpretation of visual information117, was 
applied to quantify nanoparticle delivery and biodistribution in mice118 
by analysing data from more than 30 xenograft and orthotopic tumour 
models to quantitatively assess the effects of different tumour vascular 
permeabilities on nanoparticle delivery. Similarly, machine learning 
can be applied to analyse microscopic images and quantify green fluo-
rescent protein (GFP) signals in individual cells following the delivery 
of GFP mRNA by lipid nanoparticles119. Furthermore, cell morphology 
information and GFP expression data were used to train an AI model 
to predict GFP expression before mRNA delivery119.

Big data analysis
Applying multi-omics data for the study of nano–bio interactions 
requires sequencing or mass spectrometry data of the cell to be organ-
ized and correlated in relation to nanoparticle uptake or distribution. 
Deep learning models, trained on multi-omics data, can be used to 
identify drug action targets or to distinguish cell types at the level of the 
individual cell120. For example, DeepLinc121, which uses deep learning 
analysis, allows the de novo reconstruction of cell interaction networks 
from single-cell spatial transcriptomics data, and it has been applied 
to establish models that correlate cellular molecular features with 
physiological and pathological states121. Moreover, graph neural net-
works (GNNs), deep learning models that can process graph-structured 
data, are useful to capture and learn from relational information within 
biological systems, thereby allowing the modelling and analysis of 
complex biological networks, such as protein–protein interaction 
prediction, drug discovery, gene expression analysis and biological net-
work analysis122. For example, GNNs can be applied to predict the inter-
actions between biomolecules, such as the affinity of protein–ligand 
interactions from the structure of protein–ligand complexes123, and 
nanoscale interactions in proteins and nanoparticles124. GNNs have 
also been used to train a model with thousands of chemically diverse 
lipids to establish a platform for lipid nanoparticle design125.

Table 2 | Nanomaterial labelling strategies for multi-omics studies

Application Label Nanoparticle type Labelling strategies Refs.

Imaging Fluorescence label Protein-based nanoparticles Carbodiimide reaction or isocyanate reaction 59,68,118

Gold nanoparticles Thiol–gold interaction 113

Lipid nanoparticles Electrostatic interactions or carbodiimide reaction 119

Poly (lactic-co-glycolic acid) nanoparticle Physical loading through hydrophobic interactions 69

Polystyrene nanoparticle Physical loading through hydrophobic interactions 69

Label-free Gold nanoparticles Polymerization of acryloyl-modified proteins 67

Sequencing RNA Lipid nanoparticles Electrostatic interactions 10,67,146

Silica nanoparticles Carbodiimide reaction 147

DNA Lipid nanoparticles Electrostatic interactions 148,149

Gold nanoparticles Thiol–gold interaction 150,151

Silica nanoparticle Streptavidin–biotin interaction 152

Mass spectrometry Organic molecules Gold or other metal nanoparticles Physical interactions 92

Thiol–gold interaction with different ligands 95,97,153

Heavy metal Gold or other metal nanoparticles Physical mixture with isotypes of metal ions 93

Label-free Superparamagnetic iron oxide 
nanoparticles

Magnetic enrichment 154
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Furthermore, GNNs can be trained on multi-omics data; for exam-
ple, the universal graph neural network scMoGNN creates models of 
different modalities of single cells separately, constructing networks 
based on single-cell sequencing data and incorporating biological 
knowledge from different omics analyses as additional structural 
information into the graph network126, thereby capturing higher-order 
structural relationships between cells and modalities. Thus, GNNs 
might also enable the construction of a network of cells, features, 
environments and nanoparticle characteristics. It might be possible 
to further integrate cellular response data, such as gene transcription 
or protein expression data from multi-omics studies, with protein and 
lipid libraries, thereby enabling the design of nanoparticles that achieve 
specific cell responses.

Predicting and optimizing nanoparticle fate
Similar to how generative AI models can be applied for designing 
new proteins127, reinforcement learning, supervised learning and 
generative adversarial network (GAN) models can be explored for the 
design of nanoparticles128. Such models can be further combined with 
clinical metadata, such as disease stage, age and sex, to personalize 
nanoparticle-based treatments. Reinforcement learning and GANs 
both enable the optimization of specific properties of proteins, mol-
ecules and antibodies129. Reinforcement learning is a machine learning 
approach focused on decision-making and learning from interactions 
with an environment, and it has been particularly explored in drug dis-
covery to optimize the selection of potential drug candidates through 
chemical screening130,131. Reinforcement learning can also be applied 
to predict the cytotoxicity of inorganic nanoparticles by training an 
AI model with toxicity data of metal and metal-oxide nanoparticles 
from more than 100 published papers and repositories132. In addition, 

reinforcement learning enables the top–down design of protein-based 
nanomaterials with desired systemic properties using Monte Carlo tree 
search, which helps the system explore different possibilities for how 
protein parts might fit together128. Supervised learning enables the algo-
rithm to learn from labelled data input and output to find patterns and 
predict future output based on new data. This approach has been used 
to predict the tumour accumulation of nanoparticles by learning the 
relationship between biological factors and nanoparticle delivery133,134.

GANs are deep learning models consisting of a generator and a 
discriminator. GANs can be used to generate synthetic data for training 
models, simulate biological processes and produce realistic medical 
images for diagnostic purposes135,136. Similarly, supervised learning 
has been applied to analyse mass spectrometry data of the protein 
corona at different time points following nanoparticle injection into 
mice. The protein corona composition and organ accumulation data 
were then used to train a model that predicts nanoparticle delivery 
efficiency based on corona proteins137.

Accelerating clinical translation
Multi-omics and clinical data can be integrated to predict disease out-
come and assist personalized clinical decision-making138,139. Multi-omics 
and clinical data could also help to select an optimized personalized 
nanoparticle-based drug delivery platform. However, multi-omics data 
analysis is typically time consuming and requires substantial compu-
tational resources, which may cause delay in clinical decision-making. 
The capability of AI to rapidly process complex data140 makes it a prom-
ising tool for solving this problem. In particular, high-performance 
heterogeneous graphics processing units and central processing 
unit computing clusters can accelerate the processing of multi-omics 
data141,142. For example, gene sequencing analysis requires loading of 

Box 2 | Consideration of biological variations
 

Sexual dimorphism
Sex is a crucial factor in nano–bio interactions143. In particular, 
nanoparticle uptake71, toxicity156 and immune responses157 differ 
between sexes, partly owing to genetic and epigenetic differences 
that contribute to sex-specific biomolecules, immunity and 
disease environments143. In addition, hormone levels, pregnancy, 
menopause and serum protein composition might impact nano–bio 
interactions143. For example, the nanoparticle uptake ability of 
human amniotic stem cells from female donors is greater than the 
nanoparticle uptake ability of those from male donors71. Interestingly, 
the opposite trend can be observed in primary salivary gland-derived 
fibroblasts71. Therefore, sex should be considered in preclinical and 
clinical study designs of nano–bio interactions.

Age
Systemic, cellular, genetic and epigenetic changes during 
ageing might impact responses to nanoparticles and should, 
thus, be considered in experimental design12. For example, the 
pharmacokinetics of nanoparticles might differ between young 
and ageing individuals70,158. Similarly, a population shift in liver 
macrophages can change nanoparticle clearance in aged mice68. 
Changes in macrophage receptor expression during ageing might 
also alter the effectiveness of nanoparticle delivery. For example, liver 

clearance of nanoparticles can decline with age, thereby increasing 
the efficiency of tumour delivery and improving anti-tumoural 
responses in older animals68, owing to a decrease in the expression 
of the scavenger receptor macrophage receptor with collagenous 
structure (MARCO) in young liver macrophages, compared to aged 
macrophages, as shown by single-cell transcriptome analysis. 
Accordingly, blockade of MARCO increases tumour delivery of 
nanoparticles only in young mice but not in aged mice. Therefore, 
age-related changes should be considered in the design of 
experiments, in particular, if nanoparticles are designed for diseases 
that are common in aged individuals, such as cancer.

Animal strains
Different strains of the same animal species might differ in their 
vasculature159, behaviour, such as anxiety160, and metabolism161. 
On the cellular level, animals of different strains may use different 
receptors for the same function. For example, alveolar macrophages 
of C57BL/6 and BALB/c mice express different scavenger receptors, 
which are responsible for silica uptake162. Therefore, it should be 
determined whether observations are strain-specific or whether they 
apply to the entire species. Ideally, at least two different animal strains 
should be tested, in addition to validation studies in human samples 
or genetic or proteomic databases.
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the entire genome data into memory at one time. The correspond-
ingly long analysis time may lead to delays in clinical decision-making. 
Using graphics processing unit acceleration and deep learning models 
for the integration of multi-omics data140, AI can substantially shorten 
the time needed from sequencing completion to data output (Fig. 4b).

Designing multi-omics studies 
of nano–bio interactions
Multi-omics studies of nano–bio interactions must be designed in a 
way to ensure reproducibility and robustness (Box 1). Nanoparticles 
detected and quantified by imaging, sequencing or mass spectrometry 
experiments must be robustly and correctly labelled to ensure their 
reliable and robust detection (Table 2). Therefore, distinct labelling 
strategies are needed, tailored to the type of assay and nanoparticle. 
For example, barcoding of nanoparticles by DNA, RNA, peptide or iso-
tope tags allows detection and quantification by single-cell sequencing 
and/or mass spectrometry. In addition, distinct experimental design 
needs to be considered to ensure reliable outcomes and reduce bias 
(Box 2).

Outlook
A thorough understanding of the mechanisms underlying the interac-
tions between nanoparticles and biological systems will greatly aid in 
the design of nanomedicines, for example, by improving the delivery 
of nanoparticles to specific organs or cell types or by modulating 
interactions with the immune system. Multi-omics analysis might 
enable the multidimensional assessment of nano–bio interactions in 
a physiologically relevant context, leveraging and combining differ-
ent types of data and information. However, determining the in vivo 
biodistribution of nanoparticles remains challenging, as imaging 
techniques to visualize nanoparticles in the body remain limited in 
terms of dimension and depth. Moreover, technical issues regarding 
nanoparticle imaging labels with various stability can complicate 
the interpretation of imaging results. This limitation may not have 
a simple solution and might require validation by multiple experi-
ments. Nanoparticles can be labelled with nucleic acids or peptide bar-
codes to allow their detection for sequencing and mass spectrometry 
experiments, and cellular uptake and responses can be quantified at 
single-cell resolution. Furthermore, imaging tools can be combined 
with multi-omics technologies to investigate the in vivo biodistribu-
tion of nanoparticles, for example, by combining immune-labelled 
whole-body imaging with 3D tissue imaging. In addition, correlative 
super resolution microscopy can assess the interactions of nanopar-
ticles with cells and biomolecules at a sub-cellular level. However, 
depicting spatial and temporal nanoparticle trajectories remains 
challenging.

Importantly, variations in sex, age and other factors of cells and 
animal models used in nano–bio interaction studies have resulted in 
conflicting results68,143 (Box 2). Therefore, such factors need to be con-
sidered and reported. Importantly, genetic and epigenetic heterogene-
ity further contribute to variable cellular responses to nanoparticles 
and should, thus, be accounted for in the investigation of nano–bio 
interactions by applying multi-omics technologies that can reveal 
genetic and epigenetic information at the single-cell level. Moreover, 
the spatial relationship between cells and nanoparticles and how spatial 
heterogeneity of cells contributes to variations in their interactions 
with nanoparticles should be explored.

The cellular responses to nanoparticles can be characterized by 
transcriptomics, proteomics and metabolomics analysis to identify 

differences between heterogeneous cell populations of variable uptake 
ability or cellular response to nanoparticles and probably to also iden-
tify new regulators of cellular responses. Importantly, barcoding and 
sequencing of nanoparticles might shed light on the relationship 
between nanoparticle design and its efficacy, for example, through 
simultaneous multi-omics analysis of different formulations of nano-
particles in one animal model67. The mechanistic study of genetic 
and epigenetic regulation of nano–bio interactions might further 
aid in the design of personalized or recipient-tailored nanoparticles. 
For example, how nanoparticle design might affect mRNA delivery 
and protein expression can be characterized by transcriptomics and 
proteomics, respectively. The information obtained from different 
omics experiments can also be cross-compared, with the help of AI 
and bioinformatics tools, to reveal regulatory mechanisms and fill 
knowledge gaps in nano–bio interactions.
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